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Chapter 1

Introduction

1.1 What is EGO?

EGO is a program to compute molecular dynamics trajectories. It is written in the program-
ming language C [27]. EGO runs as a massively parallel program with high efficiency on a
PowerXplorer (Parsytec) and CC (Parsytec) parallel computer using PARIX[33]. To be highly
portable EGO uses PVM [16] and MPI [11] on workstation clusters, the Cray-T3D, Cray-
T3E, the IBM-SP2 and other parallel computers. Additionaly EGO can be compiled to run
sequential and, thus, may run on any UNIX workstation or Windows NT/95 system.

We have used EGO to compute trajectories for molecular systems containing more than
35,000 atoms with extended atoms (i.e., non-polar hydrogens are handled implicitly in terms of
special atom types) or with explicit hydrogen atoms. EGO uses a modified Verlet integration
scheme (see Chapter 6). Input files to EGO consist of Brookhaven Protein Data Bank PDB
files for the atomic coordinates, and X-PLOR-compatible PSF and parameter files for topology
information and force constants.

Molecular dynamics simulations [29, 39, 31] have evolved in codes such as CHARMM (3, 4]
and X-PLOR to model motions in small molecules, proteins, and nucleic acids in order to
better understand molecular structure and function. Compared to EGO X-PLOR [6] is a
more extensive package for macromolecule structure determination and refinement written
by Professor Axel Briinger now at the Departments of Biophysics and Biochemistry at Yale
University. X-PLOR has molecule structure manipulation capabilities and other useful features
which complement the computing power of EGO for molecular dynamics (MD) work.

Because EGO and X-PLOR share common data file formats, it is important to understand
what capabilities they share and how they differ. A more detailed comparison between them
is contained in Appendix B.

In molecular dynamics calculations the equations of motion of atoms in molecules are solved
by numerical integration. Electrostatic and van der Waals interactions represent non-bonded
forces between atoms, and bonded interactions between (bonded) atoms are represented by
stretching, torsion, and stearic hindrance potentials. The computational effort of the short
range forces increases linear with the number N of atoms and is for sufficiently large systems
(N > 100) negligible compared to the computational effort caused by Coulomb interaction,
which increases with N2. To reduce this huge computational effort we developed a method
which combines a Fast Multipole Method (FMM) [18, 19, 28] and a Multiple Timestep Method
[36, 43, 22| for rapid, yet sufficiently accurate evaluation of Coulomb interactions. The FMM is
based on a multipole expansion of the Coulomb potential to a given order for a hierarchical sub-
division of space. Rather than to use a cubic subdivision of space — as most implementations of
the FMM do — we choose a Structure Adapted [32] decomposition method. This method takes
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advantage of knowledge about structural and dynamical features of the biomolecules and helps
to reduce the computational effort. The Multiple Timestep Method is based on the fact that
the influence of far separated atoms varies slowly with time and, therefore, the contribution
of these interactions can be evaluated less frequently. The combination of these algorithms,
which is implemented in EGO we termed FAst MUltiple timestep Structure Adapted Multipole
Method (FAMUSAMM) [9].

1.2 What to Read

This user manual starts with a semi-tutorial “Getting Started” (Chapter 2) followed by chapters
which describe the organization and structure of the EGO program in more detail. Several
appendices summarize other relevant information such as file formats, and the differences
between EGO and X-PLOR program.

Read Chapter 2 for a quick introduction on how to create an EGO dataset and run a simple
simulation. (You might have to use the structure editing features of the X-PLOR program to
create the needed PSF topology description files for your PDB files and molecule structures).

Chapter 4 describes the dynamics control parameter settings in more detail.

Chapters 5 and 6 describe the implementation of the program and the modified Verlet
integration method used by EGO, respectively.

1.3 Hardware & Software Requirements

EGO is able to run in a simple sequential version nearly on every platform which provides
good C-Compilers. For Windows NT/95 systems we have successfully tested EGO using the
GNU-C-Compiler.

As EGO uses PVM or MPI the program may run in the parallel form on any platform (with
slight modificiations) if PVM or MPI runs on this system. We have successfully tested the par-
allel EGO version on workstation clusters (DEC, SUN, SGI, HP), a Cray-T3D, a Cray-T3E, an
IBM-SP2 and a PowerXplorer and CC (Parsytec) parallel computer. For further information on
PVM and the newest versions of PVM see http://www.epm.ornl.gov/pvm/. For further infor-
mation on MPI see http://www.tc.cornell.edu/Edu/Talks/MPI/. To optimize performance of
EGO on a PowerXplorer parallel computer, the PARIX-version of EGO should be used instead
of the PVM-version. For further information on PARIX see http://www.parsytec.de/. The
PARIX-version, PVM-version or MPI-version is selected during compilation via preprocessor
directives (See Chapter 2.1) from the same source code.

1.4 For Further Information

Contact: Leibniz-Rechenzentrum
Barer Str. 21
D - 80333 Munich, (Germany)

or

Max-Planck-Institut fiir biophysikalische Chemie
Arbeitsgruppe fiir theoretische molekulare Biophysik
Am Faflberg 11

D-37077 Gottingen, (Germany)

April 13, 2000 Release 2.0
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e Helmut Grubmueller, hgrubmu@gwdg.de

e Helmut Heller, hellerQlrz.de
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Chapter 2

Getting Started — Computing a Trajectory

To compute a molecular dynamics trajectory with EGO, you need to:

1.

6.

7.

If you will use only the sequential version of EGO you need just a C compiler. For the
parallel version make sure that either PVM, MPI or PARIX is installed on the parallel
computer you are going to use. For details on PVM, MPI or PARIX we refer to corre-
sponding documentations. Here we give only a short description how the environment
for EGO should look like.

. install EGO on your computer. Compilation is done via a makefile written for GNU-

make. So you need to install GNU-make. The executable must be called gmake and the
location must be included to your PATH environment variable.

. provide a molecular description of your system and dynamics parameter data sets:

If you use X-PLOR the description consists of a PDB-file and a corresponding PSF-file.
Dynamics parameters are given in parameter-files (e.g., param19.pro).

. create lis-files from your data:

EGO uses only these lis-files for molecular dynamics calculations. They are ASCII-files
and contain all necessary data (molecule description, dynamics parameters, simulation
parameter). Included with the EGO distribution is the utility-program xpl2lis which
converts X-PLOR data to lis-data. A test data set of the protein BPTI is included in
the distribution of the EGO program. We are going to use this data set as an example
in our “Getting started” session.

. adapt the simulation parameters in the ASCII-file ctl.lis to your needs (time step,

output directory, etc.).
run it!

analyze data!

Command sequences in this manual are given in Unix notation. Users of MS-DOS or other
systems should substitute equivalent commands where appropriate.

2.1

Installing EGO on Your Computer

Whenever any problems occur during installation or executing EGO, please have a look at the
file readme . txt, which provides detailed and updated information to some known problems.
To install EGO do the following;:
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1. Unpack EGO:
Create a subdirectory in your home directory $(HOME) (or elsewhere),
mkdir ego
cd ego
Copy the latest EGO distribution to this directory and unpack!® it:
gtar -xzvf ego_viii.taz

2. Setup environment for EGO:
A typical PVM installation for EGO will have the following files:
$ (HOME) /pvm3
$ (HOME) /pvm3/bin/ALPHA, $(HOME)/pvm3/bin/SUN4, etc.
$(HOME) /pvm3/include -> /usr/local/pvm3/include
$ (HOME) /pvm3/1ib -> /usr/local/pvm3/1lib
The shell script $ (HOME) /ego/ipvm, which should be sourced by your .login-file (if you
use csh or tesh), sets the following environment variables:
PVM_ROOT = $(HOME)/pvm3 and PVM_ARCH = ALPHA or SUN4 or SGI, etc.
Your .login-file should also set PYM_DPATH $(PVM_ROOT)/lib/pvmd. The following direc-
tories should be added to the PATH-variable:
$ (HOME) /pvm3/1ib and $ (HOME) /pvm3/bin/$ (PVM_ARCH)

For PARIX you have to set the environment variable PXSTACK to 1500000, which you
may include to your .login-file. All calls to PARIX (e.g., Compiler, program start) are
done via the shell script ppx, which comes with PARIX. This shell script manages all
other setup for PARIX automatically.

3. Compiling EGO:
Compilation of EGO (sequential version) and all utility programs distributed with EGO
is done by typing
aimk
The shell-script aimk sets the environment variable PVM_ARCH which determines the type
of the computer you use (e.g. SUN4, ALPHA, SGI5, etc.) automatically and starts
gmake? for compilation. If you want to compile for a different architecture (e.g., PARIX
and not SUN4) you can specify this as a command line option:
aimk -sys PARIX
or
aimk -sys PVM
In addition you can pass all the standard make flags, e.g.:
aimk CC=gcc CFLAGS=-02
to use gce and optimization level 2.

The makefile (Makefile.aimk) tries to do a decent job in assigning the correct compiler
and flags, but sometimes you might have to help a bit. If you compile EGO on a hardware
platform not yet supported, please let us know which compiler, flags, etc., you used and
we will incorporate it into the makefile. The currently supported platforms are listed at
the top of Makefile.aimk which looks like:

HESHHASHHAHH R H SRS H R R R R R R R

You need gnu-tar or gnu-unzip to do this
2We recommend to use GNU-make version 3.71 or later

April 13, 2000 Release 2.0



2.2. PREPARING SIMULATION DATA FOR EGO 7

# INFORMATION:

# set SYS from the command line like

# aimk [-sys <value>] [VAR=VALUE <goals>] [<goals>]

# to express what you want.

# Possible <value>s are:

# SEQ sequential one node program

# SEQ_NANO sequential one node program on the PARIX NanoKernal
# SEQ_SP2 sequential one node program for the SP2

# SEQ_DOS sequential one node program for DOS/WIN95/WINNT (gcc)
# PVM parallel PVM program on workstation cluster

# MPI parallel MPI program on workstation cluster

# PARIX parallel PARIX program on Parsytec system

# PPCPVM parallel program under PVM on Parsytec system

The object files and the executable files of EGO and all auxilliary programs will be
written to subdirectories named like the machine type on which the compiler was run-
ning (e.g., $(HOME) /ego/SUN4/, $(HOME)/ego/ALPHA/ , etc.). The executables are also
copied to $(HOME) /pvm3/bin/<machine-type>. There are two executable files for PVM
named ego (executable for master-task) and node (exectubale for the slave tasks). There
is only one executable ego.px for PARIXand for MPI. As the PARIX compiler is a cross
compiler running for instance on a Sun workstation, ego.px is located in the correspod-
ning directory. Also one executable, named ego.<machine-type>, is created for MPI.
The filename of the sequential version of EGO is ego_seq. If you want to compile only
EGO for a run on a PowerXplorer excluding the auxilliary programs you have to type
aimk ego.px

The utility programs which are distributed with EGO are not parallelized, but run se-
quentially in any standard UNIX environment. These utility programs usually are com-
piled through the makefile for the sequential EGO version (aimk). You don’t need PVM
for these utility programs, but the makefile copies the executables to the directory pointed
to by PVM_ROOT. Thus you must have a directory $(HOME) /pvm3/bin/<machine-type>,
even if you don’t use PVM. If such a directory does not exist, it will be made for you.

If you call any of these utility programs without parameters, the program prints out
detailed explanations. As the number of utilities is still growing, refer to the file
utilities.txt for the actual list of available utility programs included to your cur-
rent copy of EGO. Some important utility programs are listed below:

e xpl2lis converts X-PLOR-data to lis-data.

e ego2crd converts EGO-output files to crd/DCD-file format (trajectory file) which
can be analyzed by other programs (X-PLOR, Quanta, etc.).

e listest prints out some important data on your simulation model (total mass,
charge, bounding box, etc.).

e mkmaxw assigns a specific ‘temperature’ to your dataset.

2.2 Preparing Simulation Data for EGO

To describe a molecule or molecular system, you need to provide a description of the location of
the atoms (the atom coordinates) and how they are connected together (the molecule topology).

Release 2.0 April 13, 2000



8 CHAPTER 2. GETTING STARTED - COMPUTING A TRAJECTORY

Furthermore, you must also provide force constants for the interactions between atoms which
are bonded together, and for interactions between atoms which are not bonded.

The former interactions are referred to as the bonded interactions, while the Coulomb and
van der Waals interactions are referred to as the non-bonded interactions.

Van der Waals ¢ and e parameters must be specified for interactions between all different
types of ‘like” atoms, and, from these, the parameters for interactions between ‘different’ atoms
are derived from the ‘like’ atom parameters using the arithmetic average for sigma and the
geometric mean for epsilon:

1
0ij = 5(0ii + 0j;)

€ij = \/€ii€jj

X-PLOR Format Datasets

Included in the EGO distribution is the utility program xpl2lis which converts data of
X-PLOR-compatible data files to lis-files used by EGO. X-PLOR data files include:

1. a .pdb (Brookhaven Protein Data Bank) file listing atom number, atom name, residue
name, residue number, atom coordinates (x,y,z in units of angstroms), a friction coeffi-
cient and force constant,

2. a .psf (protein structure file) file listing each atom type, partial charge and mass, as well
as a specification of which atom pairs are bonded, which sets of atoms form dihedral
bond angles, exclusion lists, etc. A .psf file is commonly created from a starting .pdb file
by using the structure editing functions of the X-PLOR program.

3. energy parameter file(s) which describe the bonded force parameters (such as certain
hydrogen bond interactions, for example) as well as the van der Waals parameters for
the different atom types. It is also possible for xp121is to use CHARMM parameter
files.

The structure of .pdb, .psf and parameter files are further described in Appendix A of the
EGO User Manual.

BPTI Test Dataset

A test data set for BPTI is included in the distribution of the EGO program. The data set
is placed in the directory $(HOME)/ego/testbpti/ and consists of the three X-PLOR-data
files pti.pdb, pti.psf, paraml9.pro. We are going to use these data set in our “Getting
started” session.

2.3 Creating lis-files for EGO

To create the lis-data files of the BPTI test dataset change to the directory containing the
X-PLOR data

cd $(HOME) /ego/testbpti/

and start the conversion utility program xpl2lis by typing

April 13, 2000 Release 2.0



2.4. SETTING THE CONTROL PARAMETERS 9

$ (HOME) /ego/ALPHA/xpl121is ../utils/units.def pti.pdb pti.psf paraml9.pro
This example works if you have compiled EGO via aimk for a DEC-ALPHA computer.
During conversion some information on the newly created lis-files is given. Make shure that
no warning errors occur during conversion and that xpl2lis does not stop with an fatal error.
Each lis-file consists of a short header section which gives information on type and format
of the included data. The file units.def located in the directory $(HOME)/ego/utils is a
ASCII file and is needed for FAMUSAMM, which groups atoms into structural units in order
to obtain rapidly converging multipole expansions. For every molecule structure (e.g., water,
proteins, lipids, etc.) a corresponding subdevision into such structural units has to be given in
the file units.def. In the units.def file of your EGO distribution such structural units are
already defined for TIP3-water molecules, proteins and some lipids. If you intend to simulate
molecules for which a proper subdevision into structural units is not already given, you first
must edit the units.def file. A detailed description on this procedure is given in Sec. A.1.1.

2.4 Setting the Control Parameters

The lis-file ct1l.1lis is used to define all simulation parameters. All other lis-files are data-files
of your simulation model. In Chapter 4 a detailed description of all control parameters in
ctl.lis is given. For our first run we are only interested in a few settings:

1. the number of nodes to use,
2. the time step intervals for data output and restart saves, and
3. the directory path for output files.

In the following listing of ctl.lis two nodes are requested for calculation. Every 100
integration steps a full set of energies and coordinates is written to a newly created output
file (ASCII). This is called an analysis step. The energies of all intermediate integration steps
are added also to this file. The filename of an EGO-output file is built of a number with
leading zeroes and the extension .ego (e.g. 00000451.ego). In our example the simulation
uses an integration time step of 1fs and performs 5000 integration steps. This will lead to 50
EGO-output files (00000000.ego, ..., 00000049.ego). Every 10 analysis steps, that is in
our case every 1000 integration steps, a restart file (restart.lis) is written. This restart file
can be used to recover from an unexpected interruption of the calculation (see Section 2.6).

The output directory is specified as ../out/. The trailing slash is necessary for EGO. If
this directory does not exist, EGO will create it.

There are a lot of other Control Parameters which will be discussed in detail in Chapter 4.

Example: A Fraction of the Control File ctl.lis

2 Requested number of nodes.

568 Number of atoms.

100 Freq. of analysis-printout; next line is atom selection string:
Ax

10 Frequency of writing restart-file every analysis-step!

0 Frequency of system call every analysis-step.

Release 2.0 April 13, 2000



10 CHAPTER 2. GETTING STARTED - COMPUTING A TRAJECTORY

ego2crd.sh

-1 Frequency of energy-printout.
5000 Number of integration-steps.
le-15 Integration time step in seconds.
5 Order of exclusion list.

FALSE Switch for Minimisation.

2.5 Running EGO

Now we are ready to run EGO. If you are using the sequential version of EGO just type
ego_seq.

If you use PVM you have to specify which and how many nodes should be used for EGO.
This may be done by entering the PVM console by typing
pvm
Now you can add your nodes by typing
add nodel node2 node3
(Substitute your local machine names for nodel, node2, etc.). Exiting the PVM console with
quit
will leave that configuration active for your calculation. If you add fewer nodes than you
requested in your ctl.lis file, EGO spawns some “virtual nodes” on the existing nodes?.
Always remember that one node is used as a master node. This node controls the worker
nodes, writes analysis output, etc. So if you request N nodes for calculation in ctl.lis
you should reserve N + 1 “physical nodes” of your parallel computer for EGO to get best
performance. To start calculation type
ego

If you use PARIX you start the calculation by typing
ppx run -f0 4 4 /ego/PARIX/ego.px
This command starts EGO via the link 0 (-£0) on a Parsytec PowerXplorer with 4 x4 = 16
nodes which are connected via a 2-dimensional mesh having 4 nodes on each side.

If you use MPI calculation is started usually by a mpirun command. Depending on your
MPI implementation you specify as argument either the program name or a configuration file
which gives information on the hosts to use for your run, pathes and the program name. For

further details look at the documentation of your MPI implementation.
The startup of EGO looks like:

EGO_VIII.2 A Molecular Dynamics Program

C by M. Eichinger, H. Grubmueller and H. Heller, 1988-1995
Reading control file : </home/mol/eichi/trans/data/pti/ctl.lis>
No of nodes used in calculation = 2 (out of 1 available nodes)

Found NO restart file : </home/mol/eichi/trans/data/pti/restart.lis>
Lis-files are in directory: </home/mol/eichi/trans/data/pti/>

3This clearly will slow down calculation and should be used only for tests.

April 13, 2000 Release 2.0



2.5. RUNNING EGO 11

Writing data to directory : </home/mol/eichi/trans/data/pti/out/>
Current working directory : </home/mol/eichi/trans/data/pti/>

========== Start of control file
2 Requested no of nodes.
568 Number of atoms.

========== End of control file

568 atoms will be written to output files.
Bounding-Box: X: -6.9109 27.965 dx= 34.876
Y: 10.077 34.601 dy= 24.524
Z: -11.487 24.238 dz= 35.726
Level O0: Nr_of_clusters 105 Nr_of_Children 568 (Time: 0.1074)
Cl.-Statistic-file <clusterO.out> written: <RGyr>= 1.408 Sig = 0.236
Cl.-Statistic-file <clusterl.out> written: <RGyr>= 4.032 Sig = 0.4205
Number of atoms on Node 1: 300
Number of atoms on Node  2: 268
Reading bondfile ...
Reading exclusion-file ...
Reading exclusion-14-file ...
Reading angle-file ...
Reading dihedral-file ...
Reading improper-file ...
Reading shake-file ...
Found 114 hydrogen-atoms in shake-list.

Start now distributing data to nodes ...
Node number 1 is being loaded with 300 atom-coordinates now.

EXCLUSION list ;1496

1-4 EXCLUSION list ;1044
SHAKE list ;132

BOND list (intern/extern): 226 24
ANGLE 1ist (intern/extern): 395 81
DIHEDRAL 1. (intern/extern): 151 67
IMPROPER 1. (intern/exterm): 109 33

Branch for node 1 loaded.

Reading van der Waals parameters
Reading 1-4 van der Waals parameters
Reading bond potential parameters
Reading angle potential parameters
Reading dihedral potential parameters
Reading improper potential parameters

Switched over to calculation phase!

The last line signals that EGO’s startup has finished. All necessary initialization of the
master node and worker nodes has been done and EGO starts now to calculate the trajectory.
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12 CHAPTER 2. GETTING STARTED - COMPUTING A TRAJECTORY

2.6 EGO Output

In an MD calculation, at each analysis step — as specified in the file ct1.1is — EGO displays
the energy status on the terminal screen and writes the current coordinates to the trajectory
file which are put to the output directory specified in the controls file. At each dynamics
integration step, the energy status is written to the current EGO file.

Energy Status Display

The status display lists the energies of the system at the current integration step along with the
temperature and the amount of wall clock time required per integration step. The following
display shows a sample output from a BPTI run.

ELECTROSTATIC energy: -1414.745 kcal/mol.
VAN DER WAALS energy: -260.334 kcal/mol.

BONDED energy.......: 75.33292 kcal/mol.
ANGLE energy........: 94.56998 kcal/mol.
DIHEDRAL energy.....: 110.3339 kcal/mol.
IMPROPER energy.....: 10.42692 kcal/mol.
RESTRAINT energy....: O kcal/mol.

SBOUND energy.......: O kcal/mol.

HBOND energy........: O kcal/mol.
FLOODING energy.....: O kcal/mol.
KINETIC energy......: 518.2215 kcal/mol.
TOTAL energy........: —866.1942 kcal/mol.
TEMPERATURE.........: 329.27 K.
Integration step....: 0 (0 fs)

Time per step.......: 1.503 seconds.

Restart File

In the intervals specified in the control file, EGO writes a restart file called restart.lis to the
directory containing the lis-files. A restart file contains all the information necessary to continue
the calculation at the current integration step in the event of a subsequent interruption. At
startup, EGO automatically looks for a restart file in the lis-file directory and continues the
calculation from that point rather than starting over. If you have a restart file in your lis-file
directory, but you don’t want to use it, you have to rename the restart file, e.g., by typing
mv restart.lis restart.sav

or you specify in ctl.lis a restart-file that does not exist. See also Section 4.1.

Trajectory Files

At each analysis step, EGO creates a new trajectory file in the output directory. The trajectory
files are named ‘n.ego’ starting from some number ‘n’ (eight digits, with leading zeroes) and
increasing in sequence.

A trajectory file starts with two REMARK lines and the contents of the control file fol-
lowed by the line ‘[ BEGINCOORD]’. The next line contains four numbers (number of atoms,
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2.7. DATA ANALYSIS 13

integration step, step of analysis output, integration time step in fs) which are separated by
white space. These data may be relevant for utility programs to analyze or convert the fol-
lowing atom positions (x, y, z coordinates in A). Following the list of atom coordinates is an
energy output for each integration step up to the next analysis step. Energy data is signaled
by the line {BEGINENERGY] followed by a line with two numbers specifying the number of
comment lines and the number of rows of energy output. The second comment line informs
about the meaning of the different columns. Note that in EGO data in one row are separated
by white space (spaces or tabs), that is, data columns are not given by a fixed column position!

Example Output Trajectory File Format

REMARK Qutput file of EGO_VIII on C-Version
REMARK C by M. Eichinger, H. Grubmueller and H. Heller, 1988-1995

. contents of control file ...

[BEGINCOORD]

568 552001 1 1.000000
9.930929 9.504575 -4.091603
8.971659 8.787418 -5.255728

8.105743 8.477091 -6.756792

9.998736 9.040694 -7.383424

[BEGINENERGY]

2 15

[Clock]=seconds, [Temperature]l=K, [Energies]=kcal/mol

IntStep Clock Temperature Total Kinetic Electrostatic VDW Bonded Angle ...
552001 0.3676 269.27 -1505.217 423.7917 -2009.109 -402.8278 109.4822 ...

2.7 Data Analysis

From the structure of the EGO files (see above), it should be fairly clear how to write simple
programs which can extract trajectory or energy information from the EGO files and/or convert
it into other formats. At present, the EGO distribution contains several programs for basic
format conversion. These are C programs or simple Unix shell scripts.

The C program ego2crd is a utility program which converts EGO-output files into an
X-PLOR/Quanta-compatible (FORTRAN UNFORMATTED) trajectory DCD or crd? file,
and the trajectory energy information into an ASCII format ‘.eny’ file. The source code of this
utility is placed in $ (HOME) /ego/utils/ego2crd.c and can easily be adapted to other output
formats.

“The DCD file is an X-PLOR-compatible trajectory file which can be read by, e.g., Polygen Corp.’s Quanta
molecular modeling software in combination with the PDB file information for the molecule (and a specification
of the ‘type’ of molecule as protein, nucleic acid, etc.) for visualizing and rendering the molecule at different
points in the trajectory, and for making trajectory animations, etc.
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14 CHAPTER 2. GETTING STARTED - COMPUTING A TRAJECTORY

Other Utilities

As the number of utilities is still growing, please refer to the file utilities.txt for a full list
of available programs. Some of them are described here:

ego2pdb is a utility to convert the atomic positions calculated by EGO during an MD-
simulation to other file formats, e.g. to a PDB file or to coord.lis file. This utility is also able
to read coordinates given in a free format. For further information type ego2pdb and see the
given description. To provide an example, the comand line
ego2pdb pti.pdb 00000010.ego 00000010.pdb
will combine the coordinates from the given single EGO-output file 00000010.ego with the
original PDB file (used to create the EGO lis-files) to create corresponding new PDB files.
These new PDB files are suitable for input to X-PLOR or Quanta, e.g., for further analysis or
visualization.

ego2crd is a second important utility program which converts trajectories calculated by
EGO to CHARMM compatible DCD-files or to X-PLOR compatible CRD-files. For usage
information type ego2crd

2.8 Summary

This completes the tour through the basic steps of computing a trajectory using EGO. To
recap, the basic steps are:

1. Create an EGO directory.

2. Create the EGO data lis-files from your input files.

3. Set appropriate control parameters for the simulation.
4. Run the simulation.

5. Analyze the trajectory output using utility programs or X-PLOR.
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Chapter 3

Starting and stopping EGO

Usually, EGO is started simply by typing ego or ego_seq. In that case ctl.1lis is the default
for the control file name. But it is also possible to create control files with different names,
e.g. ctl runl.lis and start EGO by typing

ego ctl runl.lis

If you provide a second filename, e.g., if you type
ego ctl runl.lis mailrestart.sh
the second file can be a shell script which performs any task in that case EGO has stopped
before the given number of simulation steps has been performed. That may be the case if you
are on a computer with batch-job queing and your time limit has exceeded. In that case you
can create a small shell-script which sends a mail to you in order to inform you and to setup
the next batch job.

There are several ways to stop the execution of EGO before the given number of integration
steps is performed. If you use 'Ctrl-C’ or if you send a SIGTERM, SIGURG, SIGQUIT,
SIGINT or a SIGHUP signal EGO catches that signal and stops as soon as the next integration
step is finished. If you send SIGUSR1 then EGO stops as soon as the next restart file has been
written.
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Chapter 4

The Control File

The lis-file ctl.1lis contains important simulation parameters, which influence your molecular
dynamics calculation and, hence, we call it the control file. In this chapter all parameters
which can be set in that control file will be described in detail. Since the computation of the
energy function in EGO is based largely on that described in the X-PLOR software package,
this chapter will contain frequent cross-references to the X-PLOR User’s Manual Version 2.1 [6]
for further clarifications.

The control file consists of three sections'. The first section is made up from a list
of lis-files, which give the full description of the model system, e.g., the position of each
atom (coord_300K.lis) and bond parameters (bondpara.lis). The second section specifies all
necessary simulation parameters, e.g., the number of integration steps to be performed. This
section has a fixed format and no line must be deleted or inserted. The third section is
optional and follows after the last line containing 'DEBUG’. This section is in a free format.

The conversion program xpl2lis sets up a control file ct1l.1is which may be regarded as
a template file. In this template file most of the parameters given in the second section are
set to reasonable values; no third section is included in that template file. Make a copy of the
template file and change the parameters in order to meet your intended simulation.

Example control file listing

32 Number of files.
shake.lis
coord_300K.1lis
lexcl.lis
2excl.lis
3excl.lis
4excl.lis
14excl.lis
mlexcl.lis
m2excl.lis
m3excl.lis
m4excl.lis
bondlist.lis
anglist.lis
dihelist.lis

!The usage of three sections does not have a very deep meaning, but is more or less a results of the program
history.
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imprlist.lis
vdw.lis
14vdw.lis
bondpara.lis
angpara.lis
dihepara.lis
imprpara.lis
hbtrlist.lis
hbacclis.lis
hbdonlis.lis
hbahmat.lis
hbbhmat.lis
hbhtype.lis
load.lis
typlist.lis
units.lis
flooding.lis
restart.lis

2 Requested number of nodes.

568 Number of atoms.

100 Freq. of analysis printout; next line is atom selection string:
Ax

10 Frequency of writing restart file every analysis step!
0 Frequency of system call every analysis step.
ego2crd.sh

-1 Frequency of energy printout.

10000000 Number of integration steps.

le-15 Integration time step in seconds.

5 Order of exclusion list.

FALSE Switch for Minimisation.

1 Friction factor (1.0=>no friction, 0.0=>no motion).
0.08 Maximum position movement per integration step.
FALSE Switch for Equilibration.

300 Target temperature in Kelvin.

le-13 Coupling time constant in s.

8 Number of distance classes.

6.000000 0

9.500000 6

15.000000 4

24.000000 4

38.000000 4

60.000000 4

96.000000 4

0 Used type of cluster algorithm (0 is default).

-2 Number of hierarchy levels.

-17 Number of branches on last level.

500 Frequency of reclustering.

out/ Path for output data.

0.4 for special 1-4 electrostatic damping.

FALSE Switch for stochastic boundary.

FALSE Switch for harmonic restraints.

TRUE Switch for SHAKE on hydrogens (Only bond length).
0.000000  0.000000 x— and x+ SBound-planes.

0.000000 0.000000 y- and y+ SBound-planes.
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4.1. LIST OF LIS-FILES 19

0.000000 0.000000 z- and z+ SBound-planes.

0.000000 0.000000 0.000000 Center of spheric SBound (x,y,z).
0.000000 Radius of spheric SBound.
0.000000 Curvature of SBOUND edges.
0.000000 Additional stochastic boundary thickness.
0.000000 Maximum friction coefficient.
FALSE Switch for using flooding.

FALSE Switch for using transl/rotation correction.

1 Flooding energy in kT.

300 Flooding temperature in Kelvin.

END

0 DEBUG: 1 == compare with exact forces

0 DEBUG: only should be used by a developer

Ixx* Here starts the third section, the free format section.
TOTAL A1-20

DIHE A1-20

4.1 List of lis-files

The control file starts with a list of lis-files. EGO reads the specified lis-files given in the
control file. The names of the lis-files are not important, but the order of the lis-files must not
be changed. Thus you can have different versions of some lis-files and specify in the control
file, which of them to use for the next calculation.

A typical lis-file name to change will be the coordinate lis-file (default name coord.lis).
You can create coordinate files with different initial temperatures by using the utility program
mkmaxw. Another important lis-file name you may specify is the name of the restart file (default
restart.lis) to be written or read.

There is a special trick with the restart-file if you connect a '@’ to the end of your restart-
file name, e.g. 'restart.lis@’. In that case, EGO writes a restart-file named ’restart.lis@’, but
it will not use it the next time you start EGO. If you want to use that restart-file later you
have to rename it to a file-name which does not end up with a '@’.

4.2 Requested Number of Nodes

This number specifies the number of requested “worker nodes” for your calculation. If EGO is
not able to access that number of nodes, fewer nodes my be used by EGO. One node works as
a master and does not directly participate in the molecular dynamics calculation. The “master
node” handles initialization, data output, etc. Make sure that there is one additional node
available for that task. One achieves best performance for n requested nodes, if there are n+1
“physical nodes”. Minimum value for this variable is 2.

If, in case of PVM, EGO is not able to access the requested number of “physical nodes”,
some “virtual nodes” are created on a “physical node”, which will clearly lead to a poor
performance. However, this may be useful during program development, as small molecules
can then be tested on a single workstation.
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4.3 Frequency of Analysis Printout

As “Frequency of analysis printout” you specify after how many integration steps coordinates
are written to an EGO-output file. The filename is built of a number with leading zeroes and the
extension .ego (e.g. 00000451 .ego). An EGO-output file contains one set of coordinates and a
number of energy printouts. The format of the EGO-output files is described in Appendix A.2
in detail. A typical value for this tag is 100.

It is possible to define a subset of atoms which are written to an EGO-output file by setting
appropriate atom selection strings (ASS). This helps to reduce the size of EGO-output files.
By default all atoms are selected (ASS=‘A*’). Atom selection strings are built from one or
more atom selection units. The format of an atom selection unit is as follows:

ASS=[+ | —[{A | R}{number | numberl — number2 | string} or
ASS=[+ | =[{DA | DR}{atomnumber}{<|>}{distance}

e +: include selected atoms/residues (default)

: exclude selected atoms/residues

e A : refer selection to atom numbers/names

e R : refer selection to residue numbers/names

e DA: refer selection by an atom-atom distance criterion
e DR: refer selection by an atom-residue distance criterion
e number : refer to a single atom or residue number

e atomnumber : refer to an atom number

e numberl-number?2 : refer to an atom or residue range
e string : select atom/residue by string-match

e distance : distance in A

Defined wildcards for string matching:

e ‘x’ maches any string

e ‘Y’ maches a single character

e ‘#’ maches any string of digits

e ‘+’ maches a single digit

A ¢/? serves as the escape character, that is e.g. in the string-portion ‘/*’ the character *’
is not interpreted as a wildcard. The atom selection units within an ASS are evaluated from
left to right.

Examples of atom selection strings:

o ASS=‘Ax’ or ‘+Ax’: Selects all atoms.

e ASS=‘Ax -AH*’: Selects all atoms except hydrogen atoms (First, all atoms are selected.
Second, all hydrogen atoms are deselected).
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e ASS=‘AC* ANx* -RPRD’ : Selects all C and all N atoms except for those in prolines.

e ASS=‘DA254<4 .5’ : Selects all atoms which are closer than 4.5 A to atom with number
254.

e ASS=‘DR254<4.5’ : Selects all residues in which at least one atom is closer than 4.5 A
to the atom with number 254.

Note: The utility program mkflood uses the same atom selection notation.

4.4 Frequency of Writing Restart-file

As “Frequency of writing restart-file every analysis-step” you specify after how many analysis
steps a restart file is written to the directory containing the other lis-files. The name of the
restart file is given in the control file (default name restart.lis). A restart file contains all
the information necessary to continue calculation at the current integration step in the event of
a subsequent interruption. At startup, EGO automatically looks for the restart file specified in
the control file and continues the calculation from that point rather than starting over. Typical
values of writing restart files range between 10 to 1000. Note: At the end of a simulation run
a restart file is created automatically!

4.5 Frequency of System Call

As “Frequency of System Call every analysis-step” you specifiy after how many completed
EGO-output files a UNIX system-call® is invoked. This system call is used to start the shell
script you specify in the subsequent line. Typical applications of such shell scripts my be
the conversion, compression or moving of EGO-output files. For that reason some help-
ful variables are passed to the shell script. For more details look at the demo shell script
$ (HOME) /ego/utils/ego2crd.sh. If you enter 0 for this variable, no system call is made?,
otherwise typical values range between 10 to 500.

Calculation of EGO is halted until the shell script has finished. It is possible to send tasks
you call in the shell script in to the background by putting an ‘&’ at the end of your UNIX
command, so EGO does not wait until the task has finished. If your task returns with an error
(return-value not zero), EGO prints a warning, but continues with calculation!

4.6 Frequency of Energy Printout

As “Frequency of energy printout” you specify after how many steps energy information is
printed to the display and to the EGO-output files. Due to the approximation algorithm used
for long range forces the electrostatic and van der Waals energy is not calculated explicitly
in every integration step. Such integration steps are flaged with a negative integration step
number. A negative value of —n for ‘Step of energy printout’ selects every n-th integration
step to be print outed. A positive value of n selects only the next integration step after the
n-th positve integration step. Zero leads to no energy printout at all.

>This is done by calling the C-function system(char *string).
3The command line may be left blank, but must not be deleted!
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4.7 Number of Integration Steps

This number specifies the number of integration-steps to be performed. After that many
integration steps a restart file is written automatically.

4.8 Integration Time Step

This variable specifies the integration time step (in seconds) used by the verlet algorithm.
Typical values range between 0.5 fs and 2 fs.

4.9 Order of Exclusion List

The exclusion list order takes a value out of £1,+2, 43, 44, 5 which excludes certain non-
bonded interactions between neighboring atoms. The meaning of this parameter is identical
to the NBXMod variable in X-PLOR:

41 no nonbonded exclusions, that is, all nonbonded interactions are computed regardless
of covalent bonds.

+2 exclude nonbonded interactions between bonded atoms (1-2).
43 exclude 1-2 and 1-3 angle nonbonded interactions
44 exclude 1-2, 1-3, and 1-4 nonbonded interactions

45 same as +4 with 1-4 damping parameter for electrostatics and special 1-4 parameter
for vdw interaction

The default exclusion list order is 5. A positive value causes explicit nonbonded exclusions to
be taken account of, a negative value causes them to be discarded. (See also [6, pp. 57 & 97].)

4.10 Switch for Minimisation

If minimization is TRUE, the atom velocities are rescaled by the friction factor ¢ at the end
of each integration step and atoms are allowed to move no more than the maximum distance
amount specified in “Maximum position movement per integration step” during one step (clip-
ping). This clipping prevents local ‘hot’ spots from developing during minimization.

As a results of such a minimization procedure the simulation system constantly looses
energy until the system will stay in a local structural minimum at temperature 0 K. In such a
minimum the total force on each atom vanishes. Usually it is not possible and not necessary to
find exactly the local minimum where all forces are zero. A measure of how far away a system
is apart from a local minimum may be given by, e.g., the maximum force or the average force
of all atoms in the simulation system. The smaller these values are, the closer the system is to
the local minimum. During a minimization run these values are printed each analysis step to
screen.

Usually, EGO performs the number of integration steps as given in ‘Number of Integration
Steps’. However, it is also possible to specify a stop criterion based on the maximum force or
the average force acting on the atoms in the system. This is done with the keyword MINIKRIT
in the free format section.
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4.11 Switch for Equilibration

If TRUE, the atom velocities are rescaled during each integration step by the instantaneous
temperature 7" of the system to the “target temperature” Ti,ger with “coupling time constant”
Tr [6, p. 132]:

Unew = Votd X /1.0 + (Trarger /T — 1.0) % (At/77)

This procedure is described in more detail in [2]. There is no option for rescaling atom
temperatures individually, or for rescaling or averaging temperature over time intervals other
than the integration time step interval.

4.12 Number of Distance Classes

EGO uses a combination of a distance class algorithm and a “Fast Multipole Method” (FMM)
to compute non bonded interactions between distant atoms. This algorithm is called FA-
MUSAMM and is described in more detail in Chapter 6.

There are 8 distance classes (class 0: 0-6.0 A, class 1: 6.0-9.5A, etc.). The number of
classes cannot be changed. The given values for the distance criterions (e.g., 6.0, 9.5, etc.) are
default values chosen by the utility program xpl2lis. In general, if one choses larger values
for these distance criterions the calculation of the electrostatic interactions is more accurate
but also more compuational effort is needed. Usually, these values do not have to be changed
and are a good tradeoff between accuracy and computational effort.

4.13 Used Type of Cluster Algorithm

As “Used type of cluster algorithm” you specify the type of cluster algorithm, which is used to
build up a hierarchy of clusters. This is needed for FMM. Currently only a neural gas vector
quantization algorithm is available. Set this variable to 0.

4.14 Number of Hierarchy Levels

As “Number of hierarchy levels” you specify the number of distance classes (hierarchy levels),
which are used by FAMUSAMM for the given simulation data. The number of hierarchies
grows with the number of atoms in your simulation system. A negative number indicates, that
EGO should determine the number of hierarchy levels automatically at run time. The utility
program xpl2lis choses a negative number of levels, thus, no manual changes are necessary.

4.15 Number of Branches on Last Level

As “Number of branches on last level” you specify the number of branches on the last level.
A branch is a cluster of atom groups (units), which is structured into smaller sub-clusters on
finer levels. The number of branches on the last level must be a multiple of the number of
nodes. A negative number indicates, that EGO determines the number of branches on the last
level automatically at run time. The utility program xpl2lis enters a negative number for
the optimal number of branches, thus, no manual changes are necessary.
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4.16 Step for New Clustering

As “Step for new clustering” you specify after how many integration steps new clustering of
atom groups will be done. Such reclustering is necessary, because the size of clusters usually
increases during a simulation as the atoms move around. Typical values range from 300 to
1000. Values greater then 500 should only be used if you simulate rigid proteins without water.

4.17 Path for Output Data

As “Path for output data” you specify the path for EGO-output files. The output path must
be a subdirectory or a symbolic link of the directory containing the lis-files. If this directory
does not exist, EGO creates it. Don’t forget to put a trailing ¢/’ at the end of your path.
Default path name is ‘out/’.

4.18 1-4 Electrostatic Damping

A scaling factor (el4) between 0 and 1 which smoothes the transition between excluded non
bonded interactions and included interactions under the the exclusion list option £5 [6, pp.
57, 97]. Default value is 0.4.

4.19 Switch for Stochastic Boundary

If TRUE, in accordance with the dissipation-fluctuation theorem, a random force is exerted
on all atoms that are subjected to friction. Which atoms are subjected to friction depends on
the harmonic restraints set in the coord.lis file (see below) or the setting of the SBOUND
parameters.

If you use harmonic restraints only (all SBOUND parameters are set to zero), you can
define the friction coefficient for every atom individually (see lis-file coord.1lis). If the friction-
coefficient of an atom is zero, no friction and no random force acts on that atom.

The utility program xpl21lis uses the nineth column (atom-property Q in X-PLOR) of a
PDB file to define the friction coefficient. The EGO distribution includes the X-PLOR-script
file $(HOME) /ego/utils/boundary.inp, which demonstrates how to set up friction coefficients
for a selection of atoms.

If you use SBOUND, the friction coefficients in the coord.lis file are ignored and instead
the stochastic forces act on atoms which are in the SBOUND region or closer then the distance
value (in A) specified in “Additional stochastic boundary thickness”. The friction coefficient,
given in ps~!, increases linearly from 0 to the value specified in “Maximum friction coefficient”.
For details see Figure 4.1.

4.20 Switch for Harmonic Restraints

If TRUE, EGO uses harmonic forces to anchor atoms at the reference position defined in the
coordinate file coord.lis. The strength of the harmonic potential can be set individually for
each atom (see lis-file coord.lis).

The utility program xpl21lis uses the tenth column (atom-property B-factor in X-PLOR)
of a PDB file to define the harmonic constant (in kcal/mol/A2. The EGO distribution includes
the X-PLOR-script file $ (HOME) /ego/utils/boundary.inp, which demonstrates how to set
up harmonic restraints for a selection of atoms.
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4.21 Switch for SHAKE on Hydrogens

If TRUE, EGO uses the SHAKE algorithm to constrain the bond length of any hydrogen atom
to its partner atom. This allows the use of longer integration time steps, usually 1fs to 2fs.
For details see [39, 25]. Note: Only the bond length, and not the angle, is constrained by
SHAKE in EGO.

The utility program xpl2lis creates the file shake.lis which contains a list of all hydro-
gens and the respective heavy atoms to which they are bonded. EGO uses this list and shakes
all hydrogens if this switch is set to TRUE. If, however, one does not like to shake all hydrogen
atoms one can choose one of the following ways: The first way is to patch the shake.lis file,
that is, one has to delete all hydrogen-heavy-atom list entries, to correct the total number of
shaked atoms and to set the switch to TRUE in the control file. The other possibility is to use
the keyword SHAKEOFF in the free format section (see Section 4.34.3).

4.22 Definition of SBOUND Region

SBOUND forces [5] restrain molecules to a given volume. The forces at the edge of the volume
are designed to mimic the effects of solvent water. In EGO cubical and spherical boundaries
can be defined (even simultaneously). The faces of a cube are defined by the positions of
planes which are parallel to the coordinate system. Spheric SBOUNDs are defined by center
and radius. A value of zero for a face position or for the radius indicates that no corresponding
SBOUND will be used.

“Curvature of SBOUND edges” sets the radius in A joining two or three SBOUND planes.
If set to zero, SBOUND planes are joined rectangularly and you can select single planes, e.g.,
only infinite parallel X7 planes. If you have a positive radius, all planes will be active, even if
they contain the origin. For details of SBOUND definition see also Figure 4.1.

Usually SBOUND is used together with stochastic boundary. Thus stochastic boundary
should be set to TRUE and a “Maximum friction coefficient” greater then zero should be
specified.

If any SBOUND is used, individual friction factors defined in coord.lis are disregarded.
However, individual harmonic restraints can still be specified in addition to SBOUND if the
switch for harmonic restraints is also set to TRUE.

EGO uses the SBOUND-potential

V(d) = Kd*(d*> — P) (4.1)

with the constants K = 0.2kcal/mol/A* and P = 2.25 A. These constants are defined in the
constants file ego.h.

4.23 Maximum Friction Coefficient

As “Maximum friction coefficient” you specify for the SBOUND case the maximum friction
coefficient in ps~! for the the stochastic boundary.

4.24 Switch for Using Flooding

If TRUE, the flooding algorithm [21] is used to speed up transitions between conformational
substates of proteins. You need to create a flooding file (default file name flooding.1lis) with
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A Shape of SBOUND potential.

B Friction coefficient for stochastic boundary increases linear and
saturates at the position of the minimum.

] Position of SBOUND is defined at the minimum.
7 Additional stochastic boundary thickness.

3 Maximum friction coefficient.

o ——— -

Figure 4.1: Definition of SBOUND potential and area of stochastic forces.

the utility program mkflood. The flooding file holds important information for the flooding
process. For detailed information about the flooding algorithm see Chapter 6.2.5.

4.25 Switch for Using Translation and Rotation Correction

If TRUE, the translational and rotational degrees of freedom are eliminated by a method
described in [7, 8]. This may be necessary for simulations of proteins in vacuum without any
harmonic restraints or SBOUND forces. Due to the approximation algorithm used for long
range forces, conservation of momentum is not fulfilled exactly. Via a dummy (=no flooding
matrix) lis-file flooding.1lis one can specify which atom coordinates will be used to inhibit
translation or rotation. Such dummy flooding files, together with the full flooding files, are
created by the utility program mkflood. For details see online help information given by
mkflood as well as Chapter 6.2.5.

4.26 Switch for Using Adaptive Flooding

THIS OPTION IS NOT YET IMPLEMENTED.
PLEASE SET THIS SWITCH TO °‘FALSE’.

For details see Chapter 6.2.5.
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4.27 Initial Energy for Flooding in kT

Initial flooding energy in units of thermal energy. Target temperature in Kelvin is used
to translate that value into kcal/mol.

4.28 Final Energy for Flooding in kT

Maximum flooding energy used in units of thermal energy. “Target temperature in Kelvin” is
used to translate that value into kcal/mol.

4.29 Flooding energy increase in kT /ps

The actual flooding energy used during the simulation is (“Initial energy for flooding in
kT”)+(elapsed time)* (“Flooding energy increase in kT/ps”) as long as this expression is
smaller than the “Final energy for flooding in kT”. Otherwise, the flooding energy is set to
“Final energy for flooding in kT”. This allows (1) to have constant flooding energy (increase 0),
(2) linear increase with time and (3) linear increase with time followed by a constant maximal
value of the flooding energy.

4.30 Time constant for adaptive flooding in s

If “Switch for using adaptive flooding” is set TRUE, this time constant is used for averaging of
the actual flooding potential in order to estimate the actual destabilization free energy AF.
That average is compared with the target flooding energy, and Ej is adjusted dynamically
such as to minimize the difference of both.

4.31 Number of User Defined Integers and Doubles

A undocumented feature

4.32 Switch for using immobilisation

If “Switch for using immobilisation” is set to TRUE, the position of the center of mass of a
set of atoms is constrained by employing a harmonic potential. The usage of this feature is
usually necessary if one uses the pulling/stepping mechnism implemented in EGO. For more
information see [23, 26]. The set of atoms from which the center of mass is calculated and
which feel that harmonic potential can be defined by the usuall selection strings defined in
Section 4.3. The integration time step at which this harmonic potential is switched on can be
defined in ‘Start integration step for flooding/immobilisation/pulling’. The harmonic constant
is set in ‘Harmonic constant for immobilisation’.

4.33 Pulling and stepping mode

This feature can be used to mimic force atomic microscopy experiments (pulling mode) as
described in Ref. [23, 26]. In such computer experiments enzyme-ligand binding can be inves-
tigated by exerting a pulling force to the ligand while the center of mass of the enzyme is held
fixed by a harmonic potential. If the pulling force is strong enough and points in the direction
the enzyme-ligand complex will rupture.
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There are two different modes, namely mode ‘1’ (or ‘4’) and mode ‘2’ (or ‘5’), to manage
pulling in EGO. If one enters ‘1’ or ‘4’ for the pulling mode a ‘virtual’ harmonic spring is used
to excert a pulling force as described in [23, 26]. In that mode, one has to specify the atom to
which one of the ends of the artifical spring is connected to. Note: Only one atom must be
selected in the subsequent selection string! Furthermore, one has to specify the movement of
the other end of the spring, i.e., one has to enter the speed (given in A /ps) and the direction of
movement into the following two lines. At least, one has to specify the spring constant, i.e., the
spring constant acting parallel to the pulling direction and the spring constant perpendicular
to the pulling direction. Usually the spring constant perpendicular to the pulling direction is
set to zero.

The modes ‘17 or ‘4’ differ only in the way how the pulling direction is defined. If one
chooses mode ‘1’ the pulling direction is given as a vector with carthesian coordinates. If one
chooses mode ‘2’ the pulling direction is defined by the interconection line of two atoms. That
direction is determined from the positions of the two atoms at the start of EGO and will not
change during a simulation even if the positions of the two atoms will change.

Example 1: (To atom 3 a ‘spring’ is attached pulling to the positive x direction)

1 Pulling mode (0=0FF,1=Pulling,2=Stepping). Next line is atom sel. string:
A3

10.0 Speed of pulling in A/ps.

1.000000 0.000000 0.000000 Pulling direction (dx,dy,dz).

20.00000 0.000000 Spring-constants (||,T) in kcal/(mol A2).

Example 2:(To atom 3 a ‘spring’ is attached pulling to the direction defined by the inter-
conection line of atom 5 and 8.)
4 Pulling mode (0=0FF,1=Pulling,2=Stepping). Next line is atom sel. string:
A3
10.0 Speed of pulling in A/ps.
5 8 Pulling direction (dx,dy,dz).
20.00000 0.000000 Spring-constants (||,T) in kcal/(mol A2).

Corresponding to the two pulling modes there are also two ‘stepping’ modes (mode ‘2’ or
‘5’). With ‘stepping’ one can move an atom or a group of atoms with a given velocity in a
certain direction. Consequently, in that mode the selection string may define a set of atoms
(e.g., a methyl-group). Any internal dynamics of such a selected group of atoms is frozen. The
values set for the spring constant are meaningless in that modes.

4.34 The Free Format Section

The last section in the control file is optional and in a “free format” which works as follows:
each line in the free format sections starts with a keyword written in capital letters followed by
a listof space or tabulator separated parameters. The order of keywords in that section does
not matter. There is also the possibility to use comments. Comment lines start with ‘I’ or
with ‘#’. Additionally the C comment style using ‘/*’ and "*/’ can be used.

4.34.1 Control of force output

The total force acting on an atom in an MD simulation is composed of several contributions,
e.g., of forces arising from bonding terms, angle terms or from electrostatic interactions. In the
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free format section of EGO one can specify that the sum of such a force contribution is written
to file for later analysis. For example, if one likes to know the force arising from bonding
contributions acting on a certain atom (or a set of atoms) one can specify the keyword BOND
and a selection string;:

BOND A5

Then, the sum of forces arising from bonding terms acting on atom 5 will be printed to the
file bond force.out located in the output directory. The file format is ASCII and easy to
understand. The general format to control force output is

<FORCETYPE> <atom selection string>

Possible keywords for <FORCETYPE> are:

BOND : Write bond forces to file bond_force.out

ANGLE : Write angle forces to file angle_force.out

DIHE : Write dihedral forces to file dihe_force.out

IMPR : Write improper forces to file impr_force.out

ELEC : Write electrostatic forces to file elec_force.out

VDW : Write van der Waals forces to file vdw_force.out

RESTR : Write restraint forces (arising from the SBOUND region) to file restr_force.out

ELECVDW : Write the sum of electrostatic and van der Waals forces to file elecvdw_force.out
INTERN : Write the sum of BOND, ANGLE, DIHEDRAL and IMPROPER to the file intern_force.out
TOTAL : Write the total forces to the file total_force.out

For further information about the format of the atom selection string see Section 4.3.

In the free format section there is also the possibility to control the output of individual

forces acting between atoms. For example, if one likes to know the bond force between atom

5 and 6 one has to specify

PICKBOND 5 6

Then, the force between the two atoms is printed to file bond_pick.out together with distance

information. The file format is again ASCIIL. Note, that there will be only a force between

atom 5 and 6 if there is a covalent bond specified in the structure file of your model system.
Other forces, which can be ‘picked’ like that, are the electrostatic and van der Waals forces,

e.g., by specifying

PICKELEC 10 203

PICKVDW 10 203

However, due to the FAMUSAMM algorithm these forces are only explictily calculated if they

are closer than about 9 A. For more distant pairs of atoms these forces are approximated by a

multipole scheme which calculates forces between groups of atoms rather than pairs of atoms.

Thus, zero is printed to the output file if one selects two atoms more distant than about 9 A.
If one likes to pick angle forces between a tripplet of atoms one, e.g., specifies,

PICKANGLE 4 6 8

Dihedral and improper forces can be picked by specifying

PICKDIHE 4 6 8 9 or

PICKIMPR 4 6 8 9

There are two further keywords (START, STRIDE and IDSTRING) which are important for the
control of force output. The keyword START specifies at which integration step EGO begins
to write out the forces to file. The keyword STRIDE controls the frequency of writing out the
forces. With the keyword IDSTRING one can set a string which modifies the name of the force
output files. Example:
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START 500

STRIDE 10

IDSTRING simulationl_

INTERN A5

ELEC A5

After integration step 500 and every 10th integration step the corresponding forces
are written to file. The files will be named simulationl_intern force.out and
simulationl elec_force.out.

Important note: Writing out forces to file considerably reduces the speed of your calculation
and takes a lot of disk space if you select a large set of atoms.

4.34.2 Control of minimization

With the keyword MINIKRIT followed by two parameters one can set a stop criterion for a
minimization run. The first parameter specifies the maximum force and the second parameter
the average force acting on the atoms in the system. For example, if one has to find a minimum
structure in which the maximum force is lower than 0.5 kcal/mol A one specifies

MINIKRIT 0.5 -1.0

The second parameter -1.0 signals that the average force criterion is not used here. Corre-
spondingly, if one specifies

MINIKRIT -1.0 0.5

the average force is used as the stop criterion. If both parametere are not equal —1.0 both
criterions must be fulfilled.

4.34.3 Control of constraints

In the free format section there are three keywords (SHAKEOFF, FORCEOFF and SPEEDOFF) which
control constraints.

The keyword SHAKEQOFF is used to patch the list of hydrogen atoms with constraint bond
length (SHAKE algorithm). Usually, if one sets TRUE in ‘Switch for SHAKE on Hydrogens’
all hydrogen atoms are shaked (see Section 4.21). If however, one wants to deselect a set of
hydrogen atoms which should not be shaked, one can use the command SHAKEQFF in the free
format section.

Example:

SHAKEQOFF Ax -RTIP3

The selection string ‘A* -RTIP3’ selects all atoms which do not belong to a TIP3 residue
and, therefore, switches off the SHAKE algorithm for these atoms. Consequently, only TIP3
hydrogens are shaked (if, of course, TRUE is set in ‘Switch for SHAKE on Hydrogens’).

The keywords FORCEOFF and SPEEDOFF can be used to switch off the forces and the velocity
of a selected set of atoms. Consequently, the selected atoms will not move while all other atoms
will move. Usually both keywords are used together each selecting the same set of atoms. As
an example application of these keywords one may think of a protein-water system. Let us
suppose that a non-optimal setup of that protein-water system has ‘produced’ a lot of water
molecules which have van der Waals overlaps with the protein. A minimization starting from
such a structure will strongly affect the protein structure as the overlapping water molecules
strongly repell the protein atoms. This can be avoided if one constraints the atom positions of
the protein by selecting all protein atoms as given in the example below.

FORCEQOFF Ax -RTIP3
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SPEEDOFF Ax -RTIP3
Then only the water molecules can move and the protein structure will be unaffected.

4.34.4 Calculation of the Hesse-Matrix

There are two keywords (HESSE and SELHESSE) which control the calculation of the cartesian
force constant Hesse-Matrix. Such a Hesse-Matrix can be used later to calculate a IR vibra-
tional spectrum. The approximation of the Hesse-Matrix H,;; = 0°E/0q;0q; is done by finite
differences of the first derivatives of the total energy E. This is either done via a one point
approximation
PE (aE(qj +d)  9E(g))
9q;0q; 9 9

or a two point approximation

)/d (4.2)

O’E - 8E(q]‘ +d) B 8E(Qj —d)
9q;0q;

)/2d (4.3)

, whereas d denotes the step-length of each finite differene step in x, y and z direction.

With the keyword HESSE one can select between one of the two modes and set the step
length given in A. The keyword SELHESSE is manditatory and is used to specify a set of atoms
for which the Hesse-Matrix should be calculated. Example:

HESSE 2 0.01

SELHESSE Ax

In that example all atoms are selected for the calculation of the Hesse-Matrix. The calculation
is done by the two point approximation and uses a step length of 0.01 A. In the output-directory
of EGO the file hesse.out is created with the corresponding Hesse-Matrix. The dimension of
the elements in the Hesse-Matrix is N/m. In the util-directory there is the utiliy program
hess2hess which is able to convert such a Hesse-Matrix to other formats and dimensions.

Note: Features which will affect the proper calculation of the Hesse-Matrix, like, e.g., Min-
imization, Equilibration or SHAKE are automatically switched off. Furthermore, the number
of steps necessary to perform the calculation of the Hesse-Matrix is set automatically.

The Hesse-Matrix is stored in the file hesse.out. The header of that contains the atoms
with their masses and positions. So, if you like to investigate isotipoc effects you just have to
change the masses here in the file. After the keyword Matrix the hesse-matrix follows. Note:
If you choose many atoms for a hesse-calulation the lines in that file get very long and some
ASCII editors (like the good old vi will not work properly and will destroy the file).

It is also possible to restart a hesse calculation. Just restart again normally. EGO will
look in the hesse.out file and will see how far it is. If it is not completed it will restart at the
right point. EGO recognizes the status of the hesse-calcualtion from two numbers in the first
line after the number of atoms. If it is not completed there will be for example 3 1 2 The first
number specifies the number of atoms for which the hesse matrix should be calulated. The
second number specifies the atom which is currently is moved and the third number specifies
in which direction it is moved. Once it is completed only the number of atoms will be left.

Example for a completed hesse-matrix for H20:
3
1 D0H2 15.99940 -0.60543 0.00000 0.77339
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2 H1 1.00800 0.00000 0.00000 1.54678
3 H2 1.00800 0.00000 0.00000 0.00000
Matrix:
620.76339 0.00555 0.12451  -302.92413 0.00365 -255.71554
-302.90517 0.00985 255.72955
1.34366 -18.29916 -0.03854 -0.53269 -2.53697 -0.13334
-0.52906 -2.54235 0.14224
-0.26595 -3.61815 867.78234 -346.08646 -0.31560 -440.00671
346.51745 -0.77901 -440.35201
-306.01033 0.02860 -349.09602 287.57882 0.00321 300.09174
15.91631 -0.01153  44.18106
4.88112 25.75767 -1.80326 1.59560 3.98306 0.36573
-0.07680 -3.65888 -0.43499
-256.41766 0.18216 -426.99687 301.58252 0.77197 486.95572
-45.46118 -1.13272 -46.69626
-306.92754 0.00193 359.79018 15.84619 0.01383 -43.98345
288.33121 -0.01516 -300.36040
4.50220 23.25857 1.67851 -0.02868 -2.56054 0.52004
1.64183 3.16829 -0.43899
256.58000 1.09238 -426.33925 45.55342 -0.96294 -46.79383
-301.54461 0.63691 487.03730
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Chapter 5

Implementation

All source file names which start with ‘eg’, like the file egmaster.c, are source files of the MD
simulation program EGO. All source file names which start with ‘wo’, like the file womain.c,
are source files of the utility program xpl2lis. An exception are the files util 1ib.c and
timing.c which are used by EGO, xpl2lis and other utility programs.

5.1 Structure of EGO

egmach.c:

EGO is designed to run on different parallel computers employing PVM, MPI or PARIXThis
module contains our “Parallel Computer Interface” (PCI) of EGO employing one of above
named parallel interface languages. This is done via a lot of preprocessor compiler directives
and, therefore, this file is hard to read. All other functions in EGO call these PCI-functions
defined in egmach.c.

egmaster.c:

This module contains the main loop over all integration steps on the master node. During
every integration step the energy values sent from the worker nodes are collected, summed up
and printed out. Periodically also atom coordinates are collected for saving in EGO-output
files or restart files.

egnode.c:

This module contains initialization and the main loop over all integration steps performed on
a worker node. After initialization multipole moments of any clusters on the own node are
calculated. Together with atom positions these data are distributed to all other worker nodes
via “data packets”. During one integration step data packets from all other worker nodes have
to be collected. The evaluation of such a data packet includes the summing up of short range
forces like bonding and angle forces. The long range forces are calculated by FAMUSAMM.
After the evaluation of each data packet the forces acting on all own atoms are known and a
verlet integration step is performed. Energy and periodically the new coordinates are sent to
the master node.

egtree.c:

This module contains all things concerning FAMUSAMM.

egclust.c:

This module manages the clustering of structural units to clusters and builds up the tree
structure which is needed for the FMM.
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5.2 Structure of xpl2lis

womain.c:
This module contains the main body of the utility program xpl2lis.
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START

load simulation data
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send data to _———" =
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wait for results g _____ @

save results to file

last yes
integration step ? STOP
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adaption of clusters ?
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Figure 5.1: Program flow on the master node. The arrows marked with capital letters symbolize data
exchange with worker nodes.
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START

wait for simulation data
- - - - = =
from master node
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Figure 5.2: Program flow on a “worker node”. During communication steps A, B and C data are
exchanged with the master node; during communication step D data are exchanged with other worker
nodes. The abbreviation “IA” stands for “InterAction”.

April 13, 2000 Release 2.0



5.2. STRUCTURE OF XPL2LIS 37
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Figure 5.3: Work to be done on a received data packet. A data packet contains atom positions and
mulipole expansions from other worker nodes. The abbreviation “LE” stands for “Local Expansion”
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Chapter 6

Methods

EGO uses a modified Verlet method integration scheme using distance classes and a FMM
to compute dynamics. This Chapter will discuss the energy function and integration method
used by EGO.

6.1 Numerical Tasks in Molecular Dynamics Simulations

6.1.1 Energy Function

In this section we review the computational aspects of molecular dynamics simulations and
discuss the relationship between the energy function used by EGO and that used by the
programs CHARMM [3, 4] and X-PLOR [6], to which it is closely related.

Computer simulations of biological macromolecules are based on a classical mechanical
model of biomolecules. For the nuclei of the N atoms of a molecule the Newtonian equations
of motion (i =1,2,...N) are assumed to hold

mit; = —VLE(F, ..., TN) (6.1)

where 7; denotes the position of the i-th atom. Here we have used the notation V; = 9/9r;.
The function E
E = Ep + Ey + Ey + Eg; + Eygqw + Eg + Ej (6.2)

defines the total energy of the molecule. It is comprised of several contributions which cor-
respond to the different types of forces acting in the molecule. The first contribution, Fp,
describes the high frequency vibrations along covalent bonds, the second contribution, Fy, the
bending vibrations between two adjacent bonds and the third contribution, Ey, the torsional
motions around bonds. The fourth contribution, Eg;, describes electrostatic interactions be-
tween partial atomic charges, the charges being centered at the positions of the atomic nuclei.
The next term, E, 41, accounts for the van der Waals-interactions between non-bonded atoms
in the molecule, Fy stands for the energy of hydrogen bonds, and the last term, Er, describes
so-called improper motions of one atom relative to a plane described by three other atoms.
Various research groups have developed functional representations and corresponding force
constants which attempt to faithfully represent atomic interactions and dynamic properties of
biomolecules [38, 3, 41, 42]. The program which we have developed is based on the energy
representation of CHARMM [3, 4]. Actually, our program can read® a file of force parameters
which has a format identical to that used by X-PLOR [6], a simulation program closely related
to CHARMM. As a result, any adaptation of force constants suggested in the framework of
CHARMM or X-PLOR can be readily transferred to our program.

Lthis is described in Section 2.3 of this manual.
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40 CHAPTER 6. METHODS

6.1.2 Integration Methods

The integration method of the Newtonian equations of motion employed by our program is
the Verlet algorithm [40]. This method determines the positions (¢t + At), of atoms i at the
instant ¢t + At according to the formula

Fi(t+ AL = 27(1) — 7t — Ab) + Fi(1) (A1) /m; (6.3)
where Fj(t) stands for the sum of all forces acting on the i-th atom at time ¢, i.e.,
Fy(t) = =ViE(F (1), 7 (1), .7y (1) (6.4)

While integrating the Newtonian equations of motion computer time is spent mainly on evalua-
tion of the two-particle interactions, i.e., of interactions originating from the Coulomb potential
Eg; and the van der Waals energy E,qi. The programs CHARMM and X-PLOR avoid the
prohibitive computational effort of an exact evaluation by allowing a cut-off for these interac-
tions; this assumes that these interactions do not contribute much to the dynamics for pairs
of atoms separated beyond a certain distance. (See below.)

We have not introduced such a criterion into our program. Rather than providing a cut-off
option we introduced an option which makes it possible to evaluate the Coulomb interaction
in a hierarchical way such that, according to a hierarchy of inter-particle distances, Coulomb
forces are updated with different frequencies. Such an algorithm has been suggested in [43] and
is described in [22, 20] and in Section 6.2.1 of this documentation. An alternative method for
an efficient evaluation of Coulomb forces, the Fast Multipole Algorithm, has been developed
by Greengard and Rokhlin [18, 19, 28] and is used in EGO simultanously for rapid evaluation
of long range forces. The combination of both algorithms we termed FAMUSAMM.

Calculation of van der Waals and Coulomb forces is the most time consuming task in
molecular dynamics calculations. The forces connected with the chemical bonds of biopolymers
are determined much more rapidly during program execution. Because of the essentially linear
arrangement of biopolymers the respective calculations can be readily ordered in a linear
fashion and, therefore, a strategy for parallel computation of forces connected with chemical
bonds is straightforward. Hence, we will not explain how these interactions are evaluated.

We would like to close this section with a brief description of the input-output requirements
of our molecular dynamics program. As input the program needs a file of force parameters, a
PDB file of atomic coordinates in protein data bank format, and a PSF protein structure file
with definitions of bonds, dihedral and improper angles, etc. The file formats are identical to
those of CHARMM and X-PLOR. As output the program delivers atomic coordinates in an
internal format which may be converted on the host computer into any format for analysis of
trajectory properties by CHARMM, X-PLOR or other programs.

6.2 Methods to Increase Efficiency

Computer simulations of a classical many-particle system are based on the solution of the

Newtonian equations
P .
My T = Fi(Fiy...,Pxv) (6.5)

where 7, denotes the position and mj, the mass of particle k, k = 1,2,..., N, N being the
number of atoms in the molecule. Fy(7,...,7y) = —ViEpot (71, ..., 7x) represents the force
acting on particle k.
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A commonly used algorithm to integrate Equations (6.5) is the ‘Verlet algorithm’ [40].
According to this algorithm, the configuration Zi4q = (71, ...,7v) € R*Y of a macromolecule
(the index denotes the integration step) at instance (i + 1)At is

Tipn =20 — & + (A2 f(3) (6.6)
where ¥; and #;_; denote the configurations at time iAt and (i — 1)At, respectively, and
fq(fi) = (5—11, el %) denotes the accelerations? acting at time iAt. At is the integration

step size. This algorithm is exact to second order in At.

—

f(#;) needs to be computed for every integration step. This vector, in general, will depend
on the positions of all particles in the system. As a result, evaluation of f (%) is the computa-
tionally most intensive part of a simulation. Furthermore, the computational effort increases
with the square of the number of particles. It appears highly desirable to reduce the number of
arithmetic operations in simulation calculations. Three approximation schemes which reduce

the number of arithmetic operations will be described now.

6.2.1 Distance Cut-Off Scheme

The most commonly used approximation cuts-off all pair interactions beyond a certain max-
imum distance Rcut. The cut-off is achieved by multiplying the force by a ‘cut-off’-function,
which depends only on the distance and reduces the force to zero in a continous, differentiable,
manner. A typical ‘cut-off’-function assumes the constant value unity up to a distance Rop,
then decreases to zero between R,, and R.y; and remains zero for all distances greater than
Rcyt. As a result, only interactions up to the distance Ryt have to be evaluated.

The appropriate choice of Ry is a compromise between accuracy and computing time. On
the one hand, the smaller R.,; is chosen, the faster the computation will be carried out. On
the other hand, a large Ry will reduce the error of the approximation.

The ‘cut-off’, although often employed, cannot be an appropriate approximation for molec-
ular dynamics simulations since a neglect of the Coulomb interaction is believed to cause major
rearrangements within the molecule. An improved approximation scheme involves ordering of
the long-range interactions according to distance classes [43], as described below. A similar
algorithm had been suggested in [36] for short-range forces in Lenard-Jones liquids.

6.2.2 Multiple Time Step Method

A ‘distance class’ is defined as follows: Let {Ry = 0,R;,..., R, } be a set of radii with R; <
Rjiq for all 5 = 0,1,...,n — 1. Then the set of particles £ with positions 7 satisfying the
condition R; < |r; — 7| < Rj41 is called the distance class j with respect to particle i . The
class scheme is illustrated in Figure 6.1.

The basic idea of the distance class algorithm relies on the observation that the change
in time of pair interactions acting between two particles in general is smaller the further they
are separated. Thus, it is possible to approximate the time development of pair interactions
by a ‘step function’, i.e. the interactions are assumed to remain constant during a number of
integration steps. For closely spaced particles the ‘step function’ extends only over a single in-
stance in time, for particles separated further the ‘step function’ extends over several instances
in time, the number of steps it spans increasing with the increasing separation between the
particles. The ‘step function’ extending over j steps implies that the force has to be computed

2We will refer to this quantity as a force, even though it is strictly an acceleration.
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Distance Classes

classno. 3

Figure 6.1: Scheme of the distance classes for a particle located at the center. The distance classes are
numbered 0, 1,2, 3. One other particle and its distance to the center particle is shown for each distance
class.

only once during j integration steps. For any given particle one can order all other atoms
according to the distance classes introduced above. The interactions with atoms in the inner
distance classes have to be computed more often than those of the outer classes. Assuming
that the forces originating from the particles within distance class j are evaluated once every
2J integration steps, an obvious choice of a distance class algorithm is of the form

n

S s 2 7(7)
xnji—i-k—i-l D zxn]"i—l—k LUn ci+k—1 + At Z n Z+2J k/2] 9 (67>
J=0

where k, denoting the integration step, runs from 0 to n; — 1. The index ¢ counts groups of
integration steps, each group consisting of n; = 2" single integration steps.

One such group will be referred to as a ‘macro-integration step’. The number of distance
classes is n+1. The force f (©) is caused by the particles of the innermost (0-th) distance class,
fﬂ(l) by the particles of the class next to the innermost and so on. Force fﬂ(") is caused by the
particles of the outermost (n-th) distance class. The brackets (|...]) denote the floor function,
i.e., the positive integer less than or equal to the argument.

The corresponding computation scheme is illustrated in Table 6.1, where the forces used for
the actual integration step are listed for the different distance classes. The numbers represent
the integration step, during which the corresponding force has been computed. The boxed
numbers represent forces that need to be evaluated, while the non-boxed forces need not be
computed, since they can be copied from previous integration steps.

As explained above, the forces of the outer distance classes, according to the distance class
algorithm, are not updated within every integration step. Instead, the most recently evaluated
forces are used as an extrapolation for the actual forces. As a result of this approximation
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integration distance class
step 0 1 2 3
N AnERnERnERD
1 1] 0 0 0
2 2] 0 0
3 3] | 2 0 0
4 4] 0
5 5] | 4 4 0
6 6] | [6] | 4 0
7 7] | 6 4 0
s | 3
9 9] 8 8 8
10 10 8 8

Table 6.1: Computation scheme for the distance class algorithm. Shown are the forces originating
from the different distance classes required during several integration steps. Boxed forces need to be
computed; the others can be copied from previous integration steps.

the total energy of the system will not be constant. Other effects on MD simulation of such
extrapolation schemes are discussed in [20].

In EGO two recently evaluated forces are used for extrapolation, employing the DC-1d
method. As in [20] shown, MD simulations are least affected by the extrapolation method

DC-1d. Let f:(f Z 41 be the force on an atom originating from distance class j for an integration
J . .
step n;i + k between the two recently evaluated forces f_,(lz Z and f:(f )(i—l)'
J
The DC-1d method is defined through

f12+k = “lg])szi-z + blg])f}z;)(ifl) (6.8)
and the coefficients through
. 3n2 —2n;+1 T . .
a,(g) = e e — " and b,(c]) =1- a(]) . (6.9)
nj(n; +1) nj(n; +1)

6.2.3 Structure Adapted Multipole Method

The Structure Adapted Multipole Method (SAMM) [32] takes advantage of knowledge about
structural and dynamical features of biomolecules and helps to reduce the number of orders
of multipole expansions for an approximate representation of the Coulomb potential. Large
biomolecules are decomposed into small structural units. The electrostatic properties of these
units can be approximated by their monopole or dipole moment. In our approach the force
field generated by a group of atoms is approximated by an electrostatic monopole if the net
charge does not equal zero (charged group of atoms), otherwise the force field is approximated
by the dipole moment (dipolar group of atoms).

As the first non vanishing multipole moment does not depend on the selected reference
point, one can minimize the error used by this approximation by selecting an optimal reference
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point. In [32] for a charged group of atoms the optimal reference point
_ > AT

> i
was derived, where ) . denotes the sum over all atoms which belong to the specified atom

group. As a result of this optimization, the dipole moment vanishes, and we effectively are
accurate up to the dipole moment. For dipolar units the optimal reference point

(6.10)

Te

-Q 7~ == [FQ P (6.11)

was derived, where p’ denotes the dipole moment )", ¢;7;. The components of the quadrupole

:0
tensor () are given by
gz,@ = Z qi(3rmri5 - Fizéaﬁ) . (6.12)

For a hierarchical treatment of electrostatic interaction these small structural units are
grouped into larger aggregates — we call such aggregates clusters — at different levels of reso-
lution. Usually EGO groups six structural units into a cluster, four clusters into a supercluster,
and so on. In order to minimize the error of the electrostatic representation by the first non
vanishing multipole moment, one has to maximize the compactness of the clusters. We want
all clusters to have approximately the same size on every hierarchy level. This is a non trivial
problem. In EGO a neural network algorithm for vector quantization [30] is used to solve this
problem.

The FMM [19, 28] uses a local Taylor expansion — often called ’local expansion” — of the
electrostatic potential for every level of resolution to sum up forces generated by sufficiently
far separated structural units or aggregates. In our implementation forces arising from atoms
which are closer then about 10 A, called the innermost interaction zone (IIZ), are calculated
exactly. In Figure 6.2 the interaction scheme of the Structure Adapted Multipole Method is
illustrated. It shows how atoms, structural units and clusters contribute to the force acting on
a selected atom.

6.2.4 Fast Multiple Time Step Structure Adapted Multipole Method

A closer look at the algorithm reveals that the computational effort for the evaluation of
local expansions is of the same magnitude as for the forces from the IIZ. It is possible to
use the Multiple Time Step Method described in Section 6.2.2 to avoid unnecessarily frequent
computations of the local expansions and of forces from the IIZ. In our approach we divided
the IIZ in two distance classes. The forces between all atoms which are closer then 5A are
calculated exactly in every integration step. The sum of forces from atoms of the second
distance class (5 - 10 A) however is calculated exactly only every other integration step. The
values of two previously calculated integration steps are used to extrapolate the forces for the
steps between two exact integration steps. As a result of this the computational effort for the
I1Z is reduced by a factor of almost two.

As explained above, the influence of atoms separated by more then 10 A is represented
through the local expansions. Analogous to the time development of forces the time devel-
opment of the coefficients of local expansions varies slowly and can be extrapolated for a
certain number of integration steps without risking too large errors. Thus the time consuming
calculation of local expansions is avoided periodically.
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Atoms 2’10,& “’161&

Structural

units
Clusters

Figure 6.2: Interaction scheme of the “Structure Adapted Multipole Method” (SAMM). For clearity
only two structural units per cluster are shown. The arrows starting from clusters and structural units
indicate contributions to the local expansions of the cluster and structural unit which contains the
selected atom. Interactions of atoms closer than about 10A are calculated exact.

The combination of the Multiple Time Step Method and the Structure Adapted Fast
Multipole Method is called FAst MUltiple time step Structure Adapted Multipole Method [9]
(FAMUSAMM). The computational effort of this method scales with O(N).

6.2.5 Conformational Flooding

‘Conformational Flooding’ is a novel method to study and to predict conformational motions
in macromolecular systems (especially in proteins) on a microsecond time scale. Such motions
typically occur as conformational (structural) transitions between distinct conformational sub-
states [12, 1]. Such motions may be localized, as for example ring flips, or collective in nature
and quite complex, like T-R-transitions, or the gating of ion channels. With few exceptions,
conformational motions are slow on the MD accessible time scale with mean transition times
ranging from nanoseconds to hours. For a review on conformational transitions, see, e.g.,
Ref. [13]. For theoretical studies, see Refs. [10, 17, 35, 14, 24].

‘Conformational Flooding’ aims at these rare events, which, at present, cannot be predicted
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with traditional molecular dynamics (MD) simulations. Given an initial conformation of the
system, the method identifies one or more product states, which may be separated from the
initial state by free energy barriers that are large on the scale of thermal energy. It also
provides approximate reaction paths, which can be used to determine barrier heights or reaction
rates with the usual techniques like umbrella sampling [37]. The method employs an artificial
potential that destabilizes the initial conformation and, thereby, lowers free energy barriers of
structural transitions. As a result, transitions are accelerated by several orders of magnitude
and thus may be observed in MD-simulations.

Conformational flooding has a variety of applications in several fields, e.g., as a tool for
protein structure determination or conformational search, to check the stability of protein
models, to predict functional motions, or to improve estimates of thermodynamic quantities
such as free energies and entropies for proteins, polymers or glasses.

A typical ‘looding-simulation’ involves several steps.

(1) Prepare the system and carry out conventional MD-simulations.

(2) After spending many CPU-hours you realize that the conformational motion of inter-
est does not occur within available simulation time; you decide to use ‘conformational
flooding’.

(3) Decide which atoms the destabilizing forces shall be acted upon (e.g., C-alpha atoms).

(4) Use an equilibrated trajectory of an MD-run (as long as possible, e.g., several 100 ps) to
generate an approximate description of the initial conformational substate by ‘mkflood’.
This description is referred to as a ‘flooding matrix’.

(5) Estimate an appropriate flooding strength.

(6) Switch on the destabilizing flooding potential (derived from the flooding matrix) and run
a ‘flooding’ simulation.

(7) Observe the value of the flooding potential as it evolves during the flooding simulation.
A sudden jump to small values indicates the conformational transition you look for.

(8) If no conformational transition is observed within available computer time, the flooding
strength was probably chosen too small. Go to (5), maybe to (3).

(9) Analyze the observed transition, look for further transitions starting with the new struc-
ture, or write a paper.

These steps are explained in detail below.

6.2.5.1 Theoretical Background

This section reviews the relevant statistical mechanics underlying ‘conformational flooding’. It
is certainly not necessary to understand everything in detail here, however, knowledge on how
and why things work helps to obtain better results.

We will treat conformational transitions in a general framework, but focus on collective
conformational transitions. Mainly due to entropic barriers, these are generally slow in terms
of transition rates and occur on time scales above nanoseconds. However, an actual event of
barrier crossing may be as fast as a few picoseconds. For a study of these motions one has
(a) to search for distinct low-energy conformations, (b) to find reaction paths connecting the
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conformations in configuration space, and (c) to estimate transition rates or mean transition
times. ‘Conformational flooding’ provides a means to carry out tasks (a) and (b). Estimates
can be derived for task (c), but here established techniques are more accurate and, therefore,
are recommended.

The potential energy landscape of proteins is quite complex, and so is the free energy
landscape. To reduce that complexity, we develop an effective, coarse-grained description
with an adjustable level of coarse graining. We will proceed in three steps. First, we will
introduce the notion of ‘conformation space’ as a subspace in configuration space. On this
subspace we will consider a free energy landscape. Second, we will motivate a proper choice of
linear collective coordinates. Third, these ‘conformational coordinates’ will serve to construct
a substate model in terms of a harmonic free energy.

From a conventional MD-simulation one obtains an ensemble of S structures (‘snapshots’)
x;, ¢ = 1...5, where x; denotes the 3N dimensional configuration vector consisting of the
N atomic positions of the N atoms within the system selected to be subjected to the flood-
ing forces. This ensemble is used to estimate the configuration space density p*(x), which
characterizes the initial (known) conformational substate.

We can obtain a coarse-grained description of p* (i.e., of the initial substate) by consid-
ering a number m (1 < m < 3N) of ‘conformational’ (typically collective) degrees of freedom
(c1,...,¢m), which are assumed to be involved in the conformational motion. Here, m enters
as an adjustable parameter, as does the selection of the IV atoms to be affected during the
flooding simulation.

The m conformational coordinates are extracted from an unperturbed MD simulation by
means of a principal component analysis [15]. Below, the averages (...) denote ensemble
averages over the unperturbed MD trajectory.

From the covariance matrix C := ((x — (x))(x — (x))*) we derive a symmetric, positive
definite 3N x 3N-matrix A~' := C, which serves to approximate the configuration space
density p* in terms of a multivariate Gaussian distribution,

)

P5(x) ~ 2 expl= 5 (x— ()T AGx — ()] (6.13)

where Z is an appropriate normalization.
Care has to be taken that rigid body motions (rotations and translations) are prohibited
during that process, since these would ‘smear out’ the configuration space density.
Diagonalizing A = QTAQ with orthonormal Q € R3¥*3N and diagonal A =
(0ijAi)ij=1,...3n yields collective coordinates q = Q(x—(x)), which serve to simplify Eq. (6.13):

. 1
p¥(a) = 2~ expl-5a’ Adq]. (6.14)

For our coarse-grained description we select the m collective coordinates ¢ = (q1,...,qm)"
with smallest eigenvalues A;. That number m of conformational degrees of freedom c; which
are explicitly considered determines the level of coarse-graining.

On the subspace of the ¢; we define a ‘conformation space density’ p€(c) as the projected

configuration space density

pole) = [ @Vl prx)ofe — £x)] (6.15)

1
~ 77! exp[—ﬁcTAcc], (6.16)
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from which we derive a free energy landscape F'(c),

F(c) = —kpTlnp(c) (6.17)

Q

1
51<;BTCTACC, (6.18)

where kp is the Boltzmann constant and T the temperature. The latter result is a harmonic
approximation, which is used as a model for the initial substate. Note that this harmonic
approximation of the free energy landscape differs from the harmonic approximation of the
potential energy, which is employed in normal mode analysis. The main difference is that the
former includes entropic contributions, whereas the latter does not.

The coarse-grained substate model in terms of F(c) serves to design a ‘flooding’-potential
Vi(c), which is to be included into the force field during MD-simulations, and which is sup-
posed to accelerate conformational transitions. In agreement with our assumption that the
conformational coordinates ¢; describe conformational transitions sufficiently accurate, we de-
fine the flooding potential as a function of only these m degrees of freedom. Note that during
a flooding simulation all (not only the m ¢;) degrees of freedom are considered, so no real
elimination of degrees of freedom takes place here.

Qualitatively, we modify the free energy landscape F' as indicated in Fig. 6.3. In the figure,
the bold line represents F'(c) in the vicinity of a substate (well) as a function of one particular
¢;. Also shown is a free energy barrier separating the initial substate from other substates
(which are not shown). The purpose of the flooding potential Vy is to rise the free energy
within the substate (thin line) as to destabilize that initial substate and to drive the system
into another substate. As is also indicated in the figure, we require Vg to be short-ranged,
so that the barrier is unaffected. With that assumption, the free energy barrier height is
reduced by a destabilization free energy AF' indicated in the figure and defined below, and
one expects a corresponding acceleration exp(AF/kyT) of conformational transitions. That
process is termed ‘conformational flooding’.

Figure 6.3: ‘Conformational Flooding’ lowers free energy barriers of conformational transitions and
thus accelerates the transitions. The figure shows a cut through the free energy landscape F(¢;) (bold
line) along a particular conformational coordinate ¢; in the vicinity of a conformational substate (well).
To the right, a free energy barrier separates the substate from another one (not shown). Inclusion of
the artificial flooding potential Vg into the Hamiltonian of the system reduces the barrier height by an
amount AF' (thin line).
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To ensure that Vj ‘fits’ into the initial substate (cf. Fig. 6.4) we chose a (multivariate)
Gaussian,

Va(c) :== Eq eXp[—%cTAcc/vz’] (6.19)

(not to be mixed up with the density model p°(c), which only accidentally happens to have the
same functional form), where Ejq is the strength of the flooding potential, and v = \/Eq/kpT
determines the overall extension of the flooding potential. With that choice, Vg reduces the
depth of the energy well uniformly without extending much into the high energy regions of
conformation space, where barriers are to be expected.

Figure 6.4: Harmonic effective Hamiltonian H¥; (bold line) and Gaussian-shaped flooding potential
Va for various flooding strengths Ej (thin, solid lines) as a function of one conformational coordinate
¢;. Adding Vg to the effective Hamiltonian of the system decreases the depth of the substate well
(dashed-dotted lines) uniformly.

We would like to stress that our flooding potential will not push the system towards any
preselected destination in configuration space; hence, no bias is included as to which product
state the system will move. Rather, the method is likely to follow transition paths of low free
energy and thus should identify those neighboring conformational substates, to which also the
unperturbed system (Vg = 0) would move at much slower time scales.

As a rule of thumb, Fig 6.5 provides an upper limit for the expected acceleration factor & for
various flooding strengths per degree of freedom, eg = Eq/m. Also given is the corresponding
destabilization free energy f = AF/m per degree of freedom.

For a more detailed description, for estimates of the acceleration factor, and for two sample
applications, see [21].

6.2.5.2 Parameters in the control file relevant for ‘flooding’

The following parameters in the control file ctl.1lis are used for conformational flooding;:

Switch for using flooding
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Figure 6.5: Expected acceleration factor & due to flooding strength eq = Eq/m per degree of freedom.

Set this switch to TRUE in order to include a flooding potential into the force field. The
flooding matrix flooding.1lis, which can be generated using mkflood, is required. Transla-
tion/rotation correction should always be switched on. Appropriate flooding energy strengths
(see below) must be given. Set this switch to FALSE to perform a conventional MD simula-
tion. In this case all parameters given below are ignored, except for the Switch for using
transl/rotation correction

Switch for using transl/rotation correction

If set to TRUE, this switch eliminates rigid body movements like translations and rotations of
the selected atoms during a simulation. This feature is required for performing flooding simu-
lations. Since the atom selection is given in the file flooding.1lis, that file is always required
if rigid body movements are to be eliminated. Rigid-body elimination is also necessary for
the unperturbed MD-run required to generate a flooding matrix [step (4) above]. Don’t be
confused by the fact that here, of course, you will not have a flooding-matrix at hand. Instead,
a dummy-file flooding.1lis can be created using mkflood, in which only the atom selection
is contained (see the sample application given below).

Switch for using adaptive flooding

THIS OPTION IS NOT YET IMPLEMENTED.
PLEASE SET THIS SWITCH TO ‘FALSE’.

Adaptive flooding is an issue where indeed some knowledge on the theory section is benefi-
cial. If you have not yet read that section, we recommend setting this switch to FALSE, in which
case the Time constant for adaptive flooding is ignored. We emphasize, however, that
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there are cases in which conformational flooding will work much better when using adaptive
flooding.

When performing a flooding simulation, two quantities can be used to characterize and to
adjust the flooding strength: (a) the flooding energy Ejg, which determines the ‘height’ of the
flooding potential Vi and (b) the average value (a running average with an appropriate time
constant) of the actual value of the flooding potential Vg, which is a function of configuration
and, therefore, of time. It can be shown that this average is a good estimate for the flooding
destabilization free energy AF, which in turn determines the expected acceleration factor
a = exp(AF/kyT) via the Boltzmann factor. In contrast, the relation between the flooding
energy Fg and the expected acceleration is not quite clear and depends sensitively on the
quality of the Gaussian configuration space density approximation.

Thus setting a definite value for the flooding energy Eq (switch: FALSE) makes it somewhat
difficult to estimate its effect and typically entails a couple of trial-and-errors.

On the other hand, dynamically adjusting the flooding energy Ej such that a definite
value for the destabilization free energy AF' (and, therefore, for the expected acceleration) is
obtained (switch: TRUE) makes life much easier, but requires more experience in the interpre-
tation of the development of the flooding energy in time.

Initial energy for flooding in kT

Initial flooding energy in units of thermal energy. Target temperature in Kelvin is used to
translate that value into kcal/mol. Typical values are zero or small values, if increasing flood-
ing strength is required, or a value equal to Final energy for flooding in kT, if constant
strength is required. Depending of the Switch for using adaptive flooding, this energy is
interpreted in two different ways: If the switch is set to FALSE, the energy denotes the flooding
energy Fjy; if set to TRUE, a target value for the actual averaged value (running average with
time constant Time constant for adaptive flooding in s) of the flooding potential Vj is
given here.

Final energy for flooding in kT

Maximum flooding energy used in units of thermal energy. Target temperature in Kelvin
is used to translate that value into kcal/mol. Flooding energy increase in kT/ps is used
to determine how fast this maximum value is reached. Depending on the Switch for using
adaptive flooding, this energy is interpreted in two different ways: If set to FALSE, the en-
ergy denotes the flooding energy FEg; if set to TRUE, a target value for the actual averaged value
(running average with time constant Time constant for adaptive flooding in s) of the
flooding potential Vj is given here.

Flooding energy increase in kT/ps

The actual flooding energy used during the simulation is (Initial energy for flooding
in kT)+(elapsed time)*(Flooding energy increase in kT/ps) as long as this expression is
smaller than the Final energy for flooding in kT. Otherwise, the flooding energy is set
to Final energy for flooding in kT. This allows (1) to have constant flooding energy (in-
crease 0), (2) linear increase with time and (3) linear increase with time followed by a constant
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maximal value of the flooding energy.

Time constant for adaptive flooding in s

If Switch for using adaptive flooding is set TRUE, this time constant is used for averaging
of the actual flooding potential in order to estimate the actual destabilization free energy AF'.
That average is compared with the target flooding energy, and Ej is adjusted dynamically
such as to minimize the difference of both.

6.2.5.3 Creating a ‘flooding’ matrix: mkflood

The program mkflood carries out the principal component analysis on an ensemble of structures
(ego-files) and creates the appropriate flooding matrix flooding.1lis required to carry out a
flooding simulation. Typically, the quality of the flooding matrix will be the better, the larger
the used structure ensemble is, i.e., the longer the used MD trajectory is.

To further enhance the accuracy of the flooding matrix, mkflood allows to extrapolate the
parameters of the flooding matrix to infinite times. It does so by considering subsets i of the
structure ensemble of increasing size AT; and by performing a principal component analysis on
each of these subsets. The function A\(AT) = a—b/AT is then fitted to each of the appropriate
parameters (the eigenvalues) of the matrices, and an estimate A\(AT — oo) = a is obtained.
The sub-ensembles used are chosen to increase in size logarithmically, starting with a given
minimal size, and up to the total ensemble available.

In ‘dummy-mode’, mkflood allows to generate a file flooding.1lis, containing solely a
list of selected atoms. This feature is useful to carry out a conventional MD-simulation with
rotation/translation correction, as, e.g., required to generate an ensemble for the initial con-
formational substate.

The format of the program call is

mkflood <pdb-file> <psf-file> <start-num> <end-num> <min. #files>
<#steps> <nr_of_dofs> [’<Sel.-string>’]

with the following arguments:

<pdb-file>: Coordinate file used to determine the numbers of the selected
atoms.
<psf-file>: Structure file used to determine the numbers of the selected atoms.
<start-num>: Number of the first ego-file of the structure ensemble to be used
for the principal component analysis.
<end-num>: Number of the last ego-file used
<min. #files>: minimal ensemble size used for the extrapolation to infinite
times. The first flooding matrix will be computed from the ego-
files <start-num>...<start-num>+<min. #files>-1. Atten-
tion: In order to avoid singularities (which result in an error mes-
sage), take care that the minimal ensemble size is larger than the
dimension of the configuration space considered, i.e., larger than
three times the number of selected atoms.
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<#steps>: Number of flooding matrices to be computed. Each of the ma-
trices is computed from a different number of ego-files, these
numbers are distributed logarithmically in the range <min.
#files>...<end-num>-<start-num>. Use <#steps>=0 in order
to avoid any extrapolation. In this case only one flooding matrix
is computed from the complete ensemble given, and the value of
<min. #files> is ignored.
<nr_of_dofs>: The number m of degrees of freedom used as ‘flooding degrees of
freedom’ ¢;. That number must be smaller than or equal to 3N —6,
where N is the number of selected atoms.
<Sel.-string>: Expression to select those atoms from the system, which (a) are
used for the translation/rotation correction, (b) which are used
for the principal component analysis to create the flooding matrix,
and (c) onto which the flooding potential acts upon. A typical se-
lection would include only one representative of groups of atoms,
whose motion is strongly correlated (to save computer time), e.g.,
the alpha carbon of each group, and exclude those atoms of the
system, which definitely do not actively take part in the confor-
mational motion to be studied (e.g., solvent atoms).

The general syntax of the selection string is
[+]-1{A|R}{<number |numl-num2|string},
where

+: includes the selected atoms/residues (default),
- : excludes the selected atoms/residues,
A : refers selection to atom numbers/names,
R: refers selection to residue numbers/names,
number : selects a single atom/residue,
numi-num?2 : selects an atom/residue range, and
string : selects an atom/residue by string-match. Allowed wild-cards are
* (string), % (single character), # (string of digits), and + (single
digit), similar to the XPLOR selection scheme.

Example: The selection  ACx AN* -RPRO’ selects all carbon (C) atoms and all nitrogen (N)
atoms except for those in prolines.
To create a dummy flooding-matrix-file to be used for translation/rotation correction, use:
mkflood <pdb-file> <psf-file> 0 0 0 O 0 [’<Selection-string>’]

6.2.5.4 A sample application

Assume we want to predict the gating reaction of gramicidin A, a small ion channel. The
initial structure entered into the flooding simulation described below is depicted in Fig. 6.6
(upper two panels); the predicted final configuration is depicted in Fig. 6.6 (lower two panels).
Water molecules are drawn in blue. Note the red (dark) ring, which has moved outside the
channel to enable the passage of ions through the channel. This gating has been observed by
patch clamp measurements.

For the flooding simulation we proceed as follows:

Steps 1 and 2:
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Figure 6.6: Initial structure (upper panels) and final structure (lower panels) of the gating reaction of
gramicidin A. The initial structure has been modeled on the basis of NMR data; the final structure has
been suggested by ‘conformational flooding’.

We assume an equilibrated structure (gram.pdb and gram.psf) is available, which does
not show considerable conformational motions within nanoseconds. In particular, no gating
transition is observed on that time scale. The system contains a total of 353 atoms. The
necessary *.lis-files are available or have been created with xpl2lis and, eventually, with
mkmaxw.

Steps 3 and 4:

We perform an unperturbed MD-simulation of 300 picoseconds length to create an ensemble
of structures, from which the flooding potential can be derived. For that purpose, coordinate
files (ego-files) are written every 100 steps. A slight coupling to a heat bath (room temperature,
300K) is used, and, very importantly, translation/rotation correction is switched on. To
tell EGO which atoms to consider for the translation/rotation correction, we have to create a
dummy flooding file flooding.1lis first:

mkflood gram.pdb gram.PSF 0 0 0 O O RDIOX ACA -R3 -R5 -R8 -R9 -R12’

Here, the selection string selects all atoms of the dioxilane ring (which has residue name
DIOX in the pdb-file) as well as all alpha carbons of the backbone with several exceptions given
explicitly to save computer time. This choice is motivated by the expectation that mainly
the dioxilane ring and the protein backbone are actively involved in the gating conformational
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transition. This is not to say that all other atoms will not be allowed to move; it is just that
the force driving the destabilization of the initial configuration will not act upon the unselected
atoms.

The dummy flooding file can now be used by EGO to create the 300 picosecond ensemble.

The following control file ctl.lis is used:

33
shake.lis

coord.lis

forceout.lis

2 Requested number of nodes.

353 Number of atoms.

100 Freq. of analysis printout; next line is

Ax

10 Frequency of writing restart file every analysis step!
0 Frequency of system call every analysis step.
ego2crd.sh

-5 Frequency of energy printout.

300000 Number of integration steps.

le-15 Integration time step in s.

5 Order of exclusion list.

FALSE Switch for Minimisation.

1 Friction factor (1.0=>no friction, 0.0=>no motion).
0.08 Maximum position movement per integration step in A.
TRUE Switch for Equilibration.

300 Target temperature in Kelvin.

le-12 Coupling time constant in s.

8 Number of distance classes.

0 Used type of cluster algorithm (0 is default).

-2 Number of hierarchy levels.

-18 Number of branches on last level.

500 Frequency of reclustering.

out/ Path for output data.

0.4 Scaling factor for special 1-4 electrostatic damping.
TRUE Switch for stochastic boundary.

TRUE Switch for harmonic restraints.

TRUE Switch for SHAKE on hydrogens (Only bond length).
FALSE Switch for using flooding.

TRUE Switch for using transl/rotation correction.

FALSE Switch for using adaptive flooding.

0 Initial energy for flooding in kT.

0 Final energy for flooding in KkT.

0 Flooding energy increase in kT/ps.

le-12 Time constant for adaptive flooding in s.
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00 Number of user defined integers and doubles.
END

0 DEBUG: 1 == compare with exact forces

0 DEBUG: only should be used by a developer.

From the ensemble of 3000 structures (ego-files) we chose all except for the first 500 (which
might be perturbed due to a non-relaxated initial structure) to create the flooding matrix with
mkflood. We use extrapolation of the eigenvalues with a minimal number of 1000 structures
and a total of 10 steps for the extrapolation. m = 20 degrees of freedom shall be ‘flooded’:

mkflood gram.pdb gram.PSF 500 3000 1000 10 20 ’RDIOX
ACA -R3 -R5 -R8 -R9 -R12’

Note that we used a selection string identical to the one used to create the dummy flooding
file for the translation/rotation correction. This should always be done.

Steps 5 through 8:

After some trial-and-error and through observing the time development of the flooding
potential after flooding has been switched on (as described below) we find that a flooding
strength of Fqg = 50 kpT results in an average value of the flooding potential of about 10kpgT.
We observe the typical behaviour that the system ‘feels’ the flooding potential and within
few picoseconds relaxes towards a slightly different structure, but still stays within the initial
substate. This relaxation induces a drop of the initially large (about 25 kpT') flooding energy
down to the stable value of roughly 10 kgT'.

Taking this value as an estimate for the destabilization free energy AF', we expect an
acceleration factor of €' ~ 20000. This seems to be a proper value, since the patch clamp
experiments tell us that the gating proceeds on a time scale of several microseconds.

[Instead of this trial-and-error we could alternatively have used adaptive flooding (set switch
to true) and directly enter the desired destabilization free energy of 10 kgT. We will, however,
not consider this further here.]

We thus chose to use a constant flooding energy of Fq = 50 kT and carry out the flooding
simulation. The following control file ctl.1lis is used:

33 Number of files.
shake.lis

coord.lis

forceout.lis

2 Requested number of nodes.

353 Number of atoms.

1000 Freq. of analysis printout; next line is ...

Ax

10 Frequency of writing restart file every analysis step!
0 Frequency of system call every analysis step.
ego2crd.sh
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-50 Frequency of energy printout.

1000000 Number of integration steps.

le-15 Integration time step in s.

5 Order of exclusion list.

FALSE Switch for Minimisation.

1 Friction factor (1.0=>no friction, 0.0=>no motion).
0.08 Maximum position movement per integration step in A.
TRUE Switch for Equilibration.

300 Target temperature in Kelvin.

le-12 Coupling time constant in s.

8 Number of distance classes.

0 Used type of cluster algorithm (0 is default).

-2 Number of hierarchy levels.

-18 Number of branches on last level.

500 Frequency of reclustering.

out/ Path for output data.

0.4 Scaling factor for special 1-4 electrostatic damping.
TRUE Switch for stochastic boundary.

TRUE Switch for harmonic restraints.

TRUE Switch for SHAKE on hydrogens (Only bond length).
TRUE Switch for using flooding.

TRUE Switch for using transl/rotation correction.
FALSE Switch for using adaptive flooding.

50 Initial energy for flooding in kT.

50 Final energy for flooding in kT.

0 Flooding energy increase in kT/ps.

le-12 Time constant for adaptive flooding in s.

00 Number of user defined integers and doubles.

END

0 DEBUG: 1 == compare with exact forces

0 DEBUG: only should be used by a developer.

After about 100 picoseconds (the actually observed transition time is a stochastic quantity
and, therefore, may vary considerably; it is distributed very much like decay times of individual
radioactive atoms) we observe a sudden jump of the flooding energy to very small values,
indicating the conformational transition we wanted to study. Indeed, inspecting the structure
after this energy jump reveals the ring flip shown in Fig. 6.6.

The ego output files written during the drop of the flooding energy provide an approximate
reaction path of the conformational transition. It can be used to calculate a free energy profile
(e.g., with umbrella sampling techniques), which in turn provides a better estimate for the
transition rate.

If the value for the flooding potential were chosen too small, e.g., 30 kT, no conformational
transition would have been observed.

A very large value for the flooding potential can cause artificial deformations of the struc-
ture, which can be detected either by visual inspection or through a significant increase of the
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short-range energy contributions like ‘bond’, ‘vdw’, ’angle’, or ‘dihedral’.

In rare cases it may happen that ‘conformational flooding’ drives the system into a ‘dead
end’, i.e., a path starting with low free energies, which does not traverse an energy barrier, but
rather ends at a barrier. In such a case the flooding energy will decrease significantly, but it
will not drop down to very small values as in the case of a conformational transition. In most
cases re-running the simulation with slightly different parameters (e.g., flooding strength) will
help here. Alternatively, one can try to reduce the number of selected atoms in such a way
as to focus more and more at those atoms involved in the transition. Note also that frequent
‘dead ends’ can indicate that the value for the flooding strength has been chosen too large,
and the system does not have enough time to ‘search’ for a low energy pathway.

Always keep in mind:

The conformational motions you would like to see within a flooding simulations may be too
slow as to be observed. Although we did not yet find any limit for the acceleration factor, it
seems unlikely that transitions on the time scale of seconds can be accelerated by as much as
nine orders of magnitude.

Finally:

Should you succeed in predicting a conformational transition using conformational flooding
we would appreciate receiving a note from you.
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Appendix A

File Formats

A basic description of the input and output data files and their use is given in Section 2.2. In
the following section we give a more detailed description of these files and their format. With
the exception of the X-PLOR trajectory output files (DCD or crd), all of these data files are
in ASCII format.

A.1 Input Files

The input files of EGO for a molecular dynamics simulation consist of atom coordinates, con-
nectivity, energy parameter and a definition file for the so-called structural units. The atom
coordinate and residue information is taken from Brookhaven Protein Data Bank (PDB) for-
mat files. The atom type, mass, partial charge, and connectivity information (bonds, angles,
etc.) is taken from X-PLOR PSF files. The energy parameters defining force constants and
equilibrium coordinates are taken from X-PLOR parameter (paramxxx.xxx) files. Further-
more, the structure adapted multipole method on which FAMUSAMM is based and which is
responsible for the approximate but fast calculation of Coulomb forces, needs the definition of
so-called structural units. These structural units are defined in the input file units.def.

A.1.1 The units definition file units.def

The file units.def located in the directory $ (HOME) /ego/utils is a ASCII file and is needed
for FAMUSAMM, which groups atoms into structural units in order to obtain rapidly converg-
ing multipole expansions. For every molecule structure (e.g., water, proteins, lipids, etc.) a
corresponding subdevision into such structural units has to be defined in the file units.def.
The utility program xpl2lis creates with the help of the units.def file the corresponding
lis-file units.lis. In the units.lis file every structural unit is defined by a list of atom
numbers which belong to that unit. Note that in EGO atom numbers start with ‘0’, X-PLOR,
PDB, PSF atom numbers start with ‘1’. Usually between three to seven heavy atoms belong
to a structural unit. Units which contain no charged atoms are called neutral units. Units
which contain charged atoms, but have no net charge are called polar units. All other units
exhibit a net charge and are called charged units.

Currently structural units are defined for simple proteins, TIP3-water, POPC- and POPE
lipids, retinal of the protein Bacteriorhodopsin, Gramicydin and Biotin. Here we give some
rules you must follow if you want to define structural units for molecules not yet defined in the
your units.def file:

e All atoms belonging to one unit must be conected via covalent bonds.

e The structural units should be compact in size.
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The best choice for the number of atoms in a structural unit is about four heavy atoms.

The net charge of charged units should be bigger then 0.1 e.

The file format of the units definition file units.def is as follows:

Tabulators and newlines work as a white space.
Comments are introduced by an ‘I’. All characters up to the end of the line are skipped.

For every residue name (e.g., TIP3, ALA, VAL, etc.) the subdevision into structural
units is controlled by a hierarchy of three ‘{’ levels. Note, that due to the PDB format
a residue name has at maximum four characters.

The first ‘{’ level includes alternative versions of a unit definition. Different definitions are
required, as different atom names may apear for one residue name. This happens usually
for residues which term amino acids in a protein: An amino acid at the O-terminus of
the protein contains two atoms with atom name ‘OT1’ and ‘OT2’. The same amino acid
contains only one atom named ‘O’ if it occurs in the chain.

The next ‘{’ level includes the structural units of one alternative.

The third ‘{’ level includes all heavy atoms, which make up a structural unit. Note, that
only heavy atoms must be indicated, as hydrogen atoms automatically are included to
the structural unit to which the heavy partner atom belongs. Thus, the same units.def
file can be used for all-atom models and compound-atom models.

The atom names within the third ‘{’ level must be separated by °,".

Below, a section of the units.def file is listed:

TIP3

{ !'#%x The TIP3 water model consits of one 0 atom and two H atoms.
%% only one alternative.
{ I*** only one structural unit.
{0H2}

}
VAL { Ix*¥x two alternatives for Valin.
!'x¥x 1. alternative: VAL in the chain.
{ I¥*x* two structural units.
{N, ca, C, 0} {CB, CG1, CG2}
}
Ix*¥x 2, alternative: VAL at the O-terminus.
{ %% two structural units.
{n, cA, C, 0T1, 0T2} {CB, CG1, CG2}
}
}
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A.1.2 Brookhaven PDB Atom Coordinate Files

The Brookhaven PDB file format can contain various information to describe molecular sys-
tems, but EGO uses only ATOM records to identify atom coordinates and stochastic boundary
parameters (when used on a per atom basis, see Section 4.19) and Section 4.20. For a given
atom, the atom type, mass and partial charge information is provided in the corresponding

PSF file generated by X-PLOR from the PDB file and topology files.
ATOM records appear in the PDB file as follows (as an example we show parts of the
file pti.pdb):

REMARR FILENAME="DTI.pdAb™

REMARK BPTI COORDINATES TAKEN FROM CRISTALLOGRAPHIC DATA W/0 WATERS
REMARK HYDROGEN POSITIONS GENERATED USING HBUILD (2 ITERATIONS)
REMARK RMS FLUCTUATIONS (T. ICHEYE) FOR HEAVY PROTEIN ATOMS INCLUDED

REMARK DATE:24-Apr-89 02:35:12 created by user: heller

ATOM 1 HT1 ARG 1 27.077 26.629 -3.076 1.00 0.00 MAIN
ATOM 2 HT2 ARG 1 27.163 28.116 -2.262 1.00 0.00 MAIN
ATOM 3 N ARG 1 26.522 27.417 -2.687 1.00 0.57 MAIN
ATOM 567 O0T1 ALA 58 26.421 31.411 -8.486 1.00 0.74 MAIN
ATOM 568 0T2 ALA 58 25.216 33.274 -8.900 1.00 0.78 MAIN
END

of atom number, atom name, residue name, residue number, the x,y,z coordinates of the

9th Oth

atom in A, followed by friction parameter (9" column) and harmonic force (10" column)
constant. The friction parameter is only used in case that the stochastic boundary is enabled
in the control file ctl.1lis, and atoms with non-zero harmonic force constants are bound to
their reference position, taken from coord.lis, with the harmonic force constant. Units are
generally given in terms of A for distance, and kcal/mol for energy, therefore, a harmonic
force constant, k, is given in units of kcal/mol /AZ. The friction constant is given in ps~1.
Included in the EGO distribution is the X-PLOR-script $(HOME) /ego/utils/boundary.inp,
which demonstrates how to set up harmonic restraints and friction factors for a selection of
atoms.

A.1.3 X-PLOR Protein Structure Files (PSF)

Protein Structure Files (PSF) are used by EGO as a summary of the atom type, mass, partial
charge and connectivity of the molecular system. PSF files are generated from the original
PDB file in combination with X-PLOR. topology file using X-PLOR.

The topology data files used by X-PLOR specify the atom parameters and connectivity for
all amino acids and nucleotides. X-PLOR extracts all the information necessary (along with
patches and modifications from the default configuration) for a given molecule in the PSF file
in the form of:

1. alist of atoms with the atom types (CH3E, CHI1E, O, N, ...), partial charges and masses,
2. a list of atom number pairs representing bonds,

3. a list of atom number triples representing the angles between pairs of bonds,
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4. a list of atom number quadruples representing dihedral angles,
5. atom number quadruples representing improper angles[3, 4],
6. atom numbers defining hydrogen bond donors and acceptors,

7. explicit nonbonded interaction exclusions (See also Section 4.9).

An example PSF file follows (pti.psf):

PSF
4 INTITLE
REMARKS FILENAME="pti.psf"
REMARKS BPTI COORDINATES TAKEN FROM CRISTALLOGRAPHIC DATA W/0 WATERS
REMARKS HYDROGEN POSITIONS GENERATED USING HBUILD (2 ITERATIONS)
REMARKS RMS FLUCTUATIONS (T. ICHEYE) FOR HEAVY PROTEIN ATOMS INCLUDED

REMARKS DATE:24-Apr-89 02:34:58 created by user: heller
568 !NATOM
1 MAIN 1 ARG HT1 HC 0.260000 1.00800 0
2 MAIN 1 ARG HT2 HC 0.260000 1.00800 0
3 MAIN 1 ARG N NH3 0.000000E+00  14.0067 0
4 MAIN 1 ARG HT3 HC 0.260000 1.00800 0
582 !NBOND: bonds
3 5 5 18 18 19 5 6
6 7 7 8 8 9 9 10
834 !'NTHETA: angles
3 5 18 3 5 6 5 18 19
18 5 6 5 6 7 6 7 8

351 !NPHI: dihedrals
3 5 6 7 5 6 7 8
6 7 8 9 7 8 9 11

259 !NIMPHI: impropers
5 3 18 6 9 8 11 10
11 12 15 9 22 20 25 23

114 !'NDON: donors
9 10 12 13 12 14 15 16
15 17 3 1 3 2 3 4

79 'NACC: acceptors
19 18 26 25 32 31 33 31
35 34 47 46 54 53 63 62
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24 'NNB
45 44 43 97 96 95 210 209
208 224 223 222 236 235 234 328
222 0 !NGRP
0 0 0 5 0 0 7 0 0

A.1.4 X-PLOR Parameter Files

The parameter files contain the parameters which correspond to the various bonds and angles
listed in the PSF file above. The files contain parameters which are appropriate for differ-
ent types of molecules
and molecular environments (proteins, solvent, etc.). The units for the angle energy con-
stants is kcal /mol /rad®. An example parameter file follows below (param19.pro for proteins):

Tremark - parameter file PARAMIO -

remark PEPTIDE GEOMETRY FROM RAMACHANDRAN ET AL BBA 359:298 (1974)

remark TORSIONS FROM HAGLER ET AL JACS 98:4600 (1976)

remark JORGENSEN NONBOND PARAMETERS JACS 103:3976-3985 WITH 1-4 RC=1.80/0.1

set echo=false end

!'' - PEPTIDE GEOMETRY TO GIVE RAMACHANDRAN ET AL BBA 359:298 (1974)

! - PEPTIDE TORSIONS FROM HAGLER ET AL JACS 98:4600 (1976)

! - NONBONDED TERMS JORGENSEN JACS 103:3976 W/ RC1-4 = 1.80 EC1-4 = 0.1

! The default h-bond exponents are now 6-repul 4-attr

! ++++++++ ATOMTYPE 0S (IN METHYL ESTER) ADDED FOR CHARMM COURSE /LN ++++
! SOLVENT PARAMETERS: SUPPORTING ST2 AND MODIFIED TIP3P MODEL
!
!
!
!

! Switched from Slater-Kirkwood to simple mixing rules - AB

! Hbond parameters based on comparisons of dimer results with
ab initio calculations. - WER 12/19/84

! Grouping of atom types for VDW parameters - BRB 1/3/85

bond C C 450.0 1.38! B. R. GELIN THESIS AMIDE AND DIPEPTIDES
bond C CH1E 405.0 1.52! EXCEPT WHERE NOTED. CH1E,CH2E,CH3E, AND CT
bond C CH2E 405.0 1.52! ALL TREATED THE SAME. UREY BRADLEY TERMS ADDED

angle C C C 70.0 106.5! FROM B. R. GELIN THESIS WITH HARMONIC
angle C C CH2E 65.0 126.5! PART OF F TERMS INCORPORATED. ATOMS
angle C C CH3E 65.0 126.5! WITH EXTENDED H COMPENSATED FOR LACK

dihe CHIE C N CH1E 10.0 2 180.0! PRO ISOM. BARRIER 20 KCAL/MOL.
dihe CH2E C N CH1E 10.0 2 180.0
dihe CRIE C C CR1E 5.0 2 180.0! => TRP 00P. VIB 170CM 1
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impr C C CR1E CH2E 90.0 0 O0.0!'GIVE 220 CM 1 METHYL OOP FOR TOLUENE.
impr C CR1E C CH2E 90.0 0O 0.0!USED HERE FOR TRP CG OUT OF PLANE
impr C CR1E CR1E CH2E 90.0 0 0.0! PHE, AND TYR CG 00P

{* nonbonding parameter section *}

{* *}

'l for use with:

!'! NBXMOD=5 ATOM CDIEL SHIFT vswitch

L CUTNB=8.0 CTOFNB=7.5 CTONNB=6.5 EPS=1.0 E14FAC=0.4 WMIN=1.5
'

! eps sigma eps(1:4) sigma(1:4)
! (kcal/mol) (A)
e

NONBonded H 0.0498 1.4254 0.0498 1.4254

NONBonded HA 0.0450 2.6157 0.0450 2.6157 !- charged group.
NONBonded HC 0.0498 1.0691 0.0498 1.0691 ! Reduced vdw radius
!

NONBonded C 0.1200 3.7418 0.1000 3.3854 ! carbonyl carbon
NONBonded CHIE 0.0486 4.2140 0.1000 3.3854 ! \

NONBonded CH2E 0.1142  3.9823 0.1000 3.3854 ! extended carbons

set echo=true end

A.1.5 X-PLOR Topology Files

An example X-PLOR topology file for protein residues shown below illustrates how the topology
information is defined there:

REMARKS TOPH19.PRO ( protein topology )

REMARKS Charges and atom order modified for neutral GROUPs.

REMARKS Histidine charges set to Del Bene and Cohen sto-3g calculations.
REMARKS Amide charges set to match the experimental dipole moment.
REMARKS Default for HIStidines is the doubly protonated state

set echo=false end
!'! for use with PARAM19 parameters ( no special hydrogen bonding potential )

!'! donor and acceptor terms just for analysis

AUTOGENERATE ANGLES=TRUE END

{* *}

{* protein default masses *}

MASS H 1.00800! hydrogen which can h-bond to neutral atom
MASS  HC 1.00800! =!'= ='= =!'= to charged atom
MASS C 12.01100! carbonyl carbon

MASS CH1E 13.01900! extended atom carbon with one hydrogen
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MASS S 32.06000! sulphur
MASS  SH1E 33.06800! extended atom sulfur with one hydrogen

some empirical rules for the following topologies:
1. angles are taken between all permutations of atoms bonded to
a particular atom. Exception: 2 angles linking the THR double ring
2. each bond with non-terminal atoms creates one dihedral. Exception:
ring bonds in aromatic side chains (but not PRO).
3. each planar atom vertex creates one improper-planar term
execption: ARG head groups.

4. each 1-extended-H carbon atom creates one improper-tetrahedral term

(for chirality)
5. Each bond in an aromatic ring creates one improper-torsion term
(exception: PRD)
6. LYS head groups and methyl head groups create one dihedral for
each hydrogen
7. all 1:2 and 1:3 nonbonded interactions are assumed to be excluded
8. All 1:4,1:5,... non-bonded interactions in aromatic rings
(or double rings) are explicitly excluded

RESIdue ALA

GROUp
ATOM N TYPE=NH1  CHARge=-0.35 END
ATOM H TYPE=H CHARge= 0.25  END
ATOM CA  TYPE=CHI1E CHARge= 0.10 END
GROUp
ATOM CB  TYPE=CH3E CHARge= 0.00 END
GROUp
ATOM C TYPE=C CHARge= 0.55  END
ATOM O TYPE=0 CHARge=-0.55  END
BOND N CA
BOND CA C
BOND C 0
BOND N H
BOND CA CB
IMPRoper CA N C CB !tetrahedral CA
DONOr H N
ACCEptor 0 C
IC N C *CA CB 0.0000 0.00 120.00 0.00 0.0000
END {ALA}

RESIdue ARG

GROUp

set echo=true end
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A.2 Output Files

Output from EGO consists of ASCII EGO files, which can be converted into X-PLOR *.DCD’
(FORTRAN UNFORMATTED) trajectory files (binary) and EGO ‘.eny’ energy summary files
(see Section 2.7).

A.2.1 EGO Trajectory Output Files (.ego)

The EGO output file format is self-explanatory. Energies are given in units of kcal/mol,
temperatures in Kelvin, and coordinates in A. The energy is given as a total, and also in its
components. An EGO file starts with two REMARK lines and the contents of the control
file followed by the line {BEGINCOORD]’. The next line contains the number of atoms, the
integration step, the step of analysis output and the integration time step in fs), which are
separated by white spaces. These data may be relevant for utility programs to analyze or
convert the following atomic coordinates (1, # coordinates in A). Following the list of atomic
coordinates is an energy output for each integration step up to the next analysis step. Energy
data is signaled by the line ‘BEGINENERGY] followed by a line with two numbers specifying
the number of comment lines and the number of rows of one energy output statement. The
second comment line informs about the meaning of the data in columns. Note that in EGO
data in columns are separated by white space, that is, data rows are not given by any fixed
row position ! An example listing (taken from Section 2.6) is shown below:

REMARK Qutputfile of EGO_VIII on C-Version
REMARK C by M. Eichinger, H. Grubmueller and H. Heller, 1988-1995

. contents of control file ...

[BEGINCOORD]

568 552001 1 1.000000
9.930929 9.504575 -4.091603
8.971659 8.787418 -5.255728

8.105743 8.477091 -6.756792

9.998736 9.040694 -7.383424

[BEGINENERGY]

2 15

[Clock]=seconds, [Temperature]=K, [Energies]=kcal/mol

IntStep Clock Temperature Total Kinetic Electrostatic VDW Bonded Angle ...
552001 0.3676 269.27 -1505.217 423.7917 -2009.109 -402.8278 109.4822 ...

A.2.2 X-PLOR Trajectory Files (.DCD, .crd)

By default, X-PLOR generates binary (FORTRAN UNFORMATTED) trajectory files.
X-PLOR can also convert these files into a more easily portable ASCII format, but both
files contain the same information.

Other programs (including Quanta, a molecular visualization and modelling package), can
read these X-PLOR binary trajectory files, and, therefore, as described in Section 2.7, the
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utility program ego2crd is provided to convert EGO format trajectory output files into the
*.DCD’ format.

The DCD format is structured as follows (FORTRAN UNFORMATTED, with Fortran
data type descriptions):

HDR NSET ISTRT  NSAVC 5-ZEROS NATOM-NFREAT DELTA  9-ZEROS
‘CORD’> #files step 1 step zeroes (zero) timestep (zeroes)
interval
Cx4 INT INT INT 5INT INT DOUBLE 9INT
NTITLE TITLE
INT (=2) CxMAXTITL
(=32)
NATOM
#atoms
INT
X(I), I=1,NATOM (DOUBLE)

Y(I), I=1,NATOM
Z(I), I=1,NATOM

A.2.3 EGO Energy Summary Files (.eny)

The ‘.eny’ energy summary files created by the utility program ego2crd list the energy break-
down at each integration step in the usual units. The file starts with three numbers giving the
number of coment lines, the number of energy columns and the number of energy lines. Energy
columns are separated by white space. For energy analysis use only the positive integration
step numbers.

2 15 1293

[Clock]=seconds, [Temperature]=K, [Energies]=kcal/mol
IntStep Clock Temperature Total Kinetic Electrostatic VDW Bonded Angle ...

0 4.341 329.27 -866.1942 518.2215 -1414.745 -260.334 75.33292 94.56998 ...
1 6.11 299.24 -900.6289 470.962 -1413.93 -262.3529 83.48541 98.46636 ...

2 4.822 286.46 -900.3844 450.8502 -1413.766 -266.1185 94.69375 107.5519 ...
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A.2.4 Format of the ‘flooding’ matrix file flooding.1lis

The file flooding.1lis is used by EGO for performing rotation/translation correction and com-
putation of the flooding forces. It contains:

the number of flooding matrices to be used (currently mkflood supports only one matrix),
the total number Ny of atoms within the system,
the number N of selected atoms,

a list of Nioa selection flags (0:not selected, 1:selected) denoting which atom has been
selected,

the 3N averaged coordinates /x) of the selected atoms,

the 3N x 3N elements of the (symmetric) flooding matrix A, which determines the
flooding potential,

and (optionally) a list of the eigenvalues (eventually extrapolated) of the covariance
matrix C (only for the human user).

The format of flooding.1lis is:

[(HEADER]
<nr_of_flooding_matrices>

<total number of atoms>

<number of selected atoms>
[USINGARRAY]
<selection flag of atom 1>

<selection flag of atom 2>

<selection flag of atom Ntotal>
[CENTER_OF_MASS]
<x-coordinate of 1st selected atom>

<y-coordinate of 1st selected atom>

<z-coordinate of 1st selected atom>

<x-coordinate of 2nd selected atom>

<y-coordinate of 2nd selected atom>

<z-coordinate of 2nd selected atom>

<x-coordinate of Nth selected atom>

<y-coordinate of Nth selected atom>

<z-coordinate of Nth selected atom>
[FLOODING_MATRIX]

<x1x1>

<xlyi1>

<xlzl>

<x1x2>

<xly2>
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<x1z2>
<x1xN>
<x1yN>
<x1zN>
<yix1>
<yly1>
<ylzi>
<y1xN>
<ylyN>
<y1lzN>

<zNxN>

<zNyN>

<zNzN>

[COVARIANCE EIGENVALUES]

<LAMBDA 1> (smallest eigenvalue)
<LAMBDA 2>

<LAMBDA 3N> (largest eigenvalue)
<EOF>
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Appendix B

Comparison of EGO and X-PLOR

The energy function implemented in EGO and the one implemented in the widely used molec-
ular dynamics program X-PLOR [6] are identical, and EGO uses X-PLOR parameter files.

B.1 Important differences between EGO and X-PLOR

EGO does not share the same command language with X-PLOR, but rather is controlled by
the setting of parameters in a control file for the molecule to be simulated. This control file
contains all of the information necessary to compute molecular dynamics trajectories. X-PLOR
is useful for the interactive analysis of the MD results.

X-PLOR is a large (60,000 lines) FORTRAN program which runs in interactive and batch
modes. X-PLOR has molecular structure manipulation, crystallographic and NMR NOE re-
finement features which EGO does not have.

EGO X-PLOR
control file command language
only molecular dynamics simulation molecular dynamics simulation and anal-
ysis, crystallographic refinement, NOE re-
straints
SHAKE for H-atoms SHAKE for bonds and angles between ar-
bitrary atom types available
free energy calculations
periodic boundaries

Table B.1: Important differences between EGO and X-PLOR

B.2 Common features of EGO and X-PLOR

At the heart of every molecular dynamics program lies the energy function (see also Section 6.1)
which describes the potential energy surface which itself determines the movement of the atoms.
The energy functions in EGO and X-PLOR are identical sums of inter-atom electrostatic, van
der Waals, and harmonic bond energies. Therefore the same sets of simulation parameters can
be used. The most important options for molecular dynamics simulations from X-PLOR are
also included in EGO: the exclusion mode for non-bonded interactions, and the attenuation
factor for special 1-4 interactions.

Both programs allow Newtonian dynamics as well as Langevin dynamics. For Langevin
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dyanamics, however, EGO allows only selected atoms to be exposed to random forces!, (e.g.,
to form a stochastic boundary). Harmonic constraints can be used to bind atoms to certain
positions in a boundary region.

To manipulate the temperature of the system, it is possible to rescale the velocities in
different ways.

EGO complements the many features of X-PLOR as a powerful computational engine
for trajectory calculations. Both programs share common file formats including PDB atom
coordinate files and PSF topology files?>. EGO can also read restart files from X-PLOR, and

X-PLOR (as well as QUANTA? [34]) can read the trajectory files from EGO.
The following features are common to both programs:

e Same Energy function.

e Same Parameter sets can be used.

e Initial atom coordinates taken from Brookhaven PDB files.
e Molecule topology taken from protein structure file (.psf).
e X-PLOR reads EGO trajectory files.

e Exclusion modes (NBXMod: —5,...,45).

e Attenuation factor for special 1-4 interactions.

e Newtonian dynamics and Langevin dynamics.

e Stochastic boundary capability.

e Velocity rescaling to manipulate temperature.

e Harmonic coordinate restraints.

e Definition of cubical and spherical SBOUND region.

B.3 Features Unique to EGO

Besides implementing the most important features of X-PLOR, EGO also offers few features
which are not available in X-PLOR. The most important one is that EGO runs concurrently
on many parallel computers.

To efficiently compute long-range interactions EGO uses a distance class algorithm (see
Section 6.2.1) and a Structure Adapted Multipole Method (see Section 6.2.3). This algorithm
is superior to the simple cut-off scheme used by X-PLOR and describes long-range interactions
more accurately.

Features unique to EGO include:

e Runs as a parallel program on many parallel computers (PVM, MPI, PARIX).
e Uses a distance-class method and a FMM to compute long-range, nonbonded interactions.

e The Flooding algorithm is used to speed up transitions between conformational substates
in a protein.

!This is no limitation, as all atoms may be selected.
2Generated by X-PLOR.
3QUANTA is a visualization program for molecular modelling copyrighted by Polygen Corp.
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References

C.1 Molecular Dynamics

J. A. McCammon and S. C. Harvey, Dynamics of proteins and nucleic acids, Cambridge
University Press, Cambridge, 1987.
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