next up previous
Next: About this document ... Up: Conformational Dynamics Simulations of Previous: Conformational Flooding

Bibliography

1
M. Levitt and Shneior Lifson.
Refinement of protein conformation using a macromolecular energy minimization procedure.
J. Mol. Biol., 46:269-279, 1969.

2
J. A. McCammon, B. R. Gelin, and M. Karplus.
Dynamics of folded proteins.
Nature (London), 267:585-590, 1977.

3
W. F. van Gunsteren and H. J. C. Berendsen.
Algorithms for macromolecular dynamics and constraint dynamics.
Mol. Phys., 34(5):1311-1327, 1977.

4
Olle Edholm, Oliver Berger, and Fritz Jähnig.
Structure and fluctuations of bacteriorhodopsin in the purple membrane.
J. Mol. Biol., 250:94-111, 1995.

5
M. Levitt and R. Sharon.
Accurate simulation of protein dynamics in solution.
Proc. Natl. Acad. Sci. USA, 85:7557-7561, 1988.

6
Walter Nadler, Axel T. Brünger, Klaus Schulten, and Martin Karplus.
Molecular and stochastic dynamics of proteins.
Proc. Natl. Acad. Sci. USA, 84:7933-7937, Nov. 1987.

7
H. Kovacs, A.E. Mark, J. Johansson, and W.F. van Gunsteren.
The effect of environment on the stability of an integral membrane helix: Molecular dynamics simulations of surfactant protein C in chloroform, methanol and water.
J. Mol. Biol., 247:808-822, 1995.

8
G.H. Peters, D.M.F van Aalten, O. Edholm, S. Toxvaerd, and R. Bywater.
Dynamics of proteins in different solvent systems: Analysis of essential motion in lipases.
Biophys. J., 71:2245-2255, 1996.

9
M. C. Nuss, W. Zinth, W. Kaiser, E. Kölling, and D. Oesterhelt.
Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin.
Chem. Phys. Lett., 117(1):1-7, 1985.

10
Feng Zhou, Andreas Windemuth, and Klaus Schulten.
Molecular-dynamis study of the proton pump cycle of bacteriorhodopsin.
Biochem., 32(9):2291-2306, 1993.

11
B. Leimkuhler and R. D. Skeel.
J. Comp. Phys., 112:117, 1994.

12
B.J. Leimkuhler, S. Reich, and R. D. Skeel.
Integration methods for molecular dynamics.
In Mathematical approaches to biomolecular structure and dynamics, Seiten 161-185, New York, 1996. Springer.

13
R. D. Skeel, G. H. Zhang, and T. Schlick.
A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications.
SIAM J. Scient. COMP., 18:203-222, 1997.

14
A. Ahmad and L. Cohen.
A numerical integration scheme for the N-body gravitational problem.
J. Comp. Phys., 12:389-402, 1973.

15
W. B. Streett, D. J. Tildesley, and G. Saville.
Multiple time step methods in molecular dynamics.
Mol. Phys., 35:639-648, 1978.

16
R. C. Y. Chin, G. W. Hedstrom, and F. A. Howes.
Considerations on Solving Problems with Multiple Scales.
Academic Press, Orlando, Florida, 1985.

17
Andreas Windemuth.
Dynamiksimulation von Makromolekülen.
Diplomarbeit, Technical University of Munich, Physics Department, T 30, James-Franck-Street, 8046 Garching, August 1988.

18
Mark E. Tuckerman, Glenn J. Martyna, and Bruce J. Berne.
Molecular dynamics algorithm for condensed systems with multiple time scales.
J. Chem. Phys., 93(2):1287-1291, Jul. 1990.

19
Helmut Grubmüller, Helmut Heller, Andreas Windemuth, and Klaus Schulten.
Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions.
Mol. Sim., 6:121-142, 1991.

20
Mark E. Tuckerman and Bruce J. Berne.
Molecular dynamics algorithm for multiple time scales: Systems with disparate masses.
J. Chem. Phys., 94(2):1465-1469, January 1991.

21
Mark E. Tuckerman, Bruce J. Berne, and Glenn J. Martyna.
Molecular dynamics algorithm for multiple time scales: Systems with long range forces.
J. Chem. Phys., 94(10):6811-6815, May 1991.

22
Robert D. Skeel, Jeffrey J. Biesiadecki, and Daniel Okunbor.
Symplectic integration for macromolecular dynamics.
In Proceedings of the International Conference Computation of Differential Equations and Dynamical Systems. World Scientific Publishing Co., 1992.
in press.

23
Robert D. Skeel and Jeffrey J. Biesiadecki.
Symplectic integration with variable stepsize.
Ann. Num. Math., 1:191-198, 1994.

24
Helmut Grubmüller.
Molekulardynamik von Proteinen auf langen Zeitskalen.
Doktorarbeit, Technische Universität München, Germany, Jan. 1994.

25
D. Okunbor and R. D. Skeel.
Explicit canonical methods for Hamiltonian systems.
Working document, Numerical Computing Group, University of Illinois at Urbana-Champaign, 1991.

26
Andreas Windemuth.
Advanced Algorithms for Molecular Dynamics Simulation: The Program PMD.
ACS Books, 1995.

27
D. D. Humphreys, R. A. Friesner, and B. J. Berne.
Simulated annealing of a protein in a continuum solvent by multiple-time-step molecular dynamics.
J. Phys. Chem., 99:10674-10685, 1995.

28
P. Procacci, T. Darden, and M. Marchi.
A very fast molecular dynamics method to simulate biomolecular systems with realistic electrostatic interactions.
J. Phys. Chem., 100:10464-10468, 1996.

29
S. J. Stuart, R. Zhou, and B. J. Berne.
Molecular dynamics with multiple time scales: The selection of efficient reference system propagators.
J. Chem. Phys., 105:1426-1436, 1996.

30
R. Zhou and B. J. Berne.
A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems.
J. Phys. Chem., 103:9444-9459, 1995.

31
T. Schlick, E. Bartha, and M. Mandziuk.
Biomolecular dynamics at long timesteps: Bridging the timescale gap between simulation and experimentation.
Ann. Rev. Biophys. Biom. Structure, 26:181-222, 1997.

32
Andrew. W. Appel.
An efficient program for many-body simulation.
SIAM J. Sci. Stat. Comput., 6(1):85-103, January 1985.

33
Josh Barnes and Piet Hut.
A hierarchical o(n log n) force-calculation algorithm.
Nature (London), 324:446-449, December 1986.

34
L. Greengard and V. Rokhlin.
On the evaluation of electrostatic interactions in molecular modeling.
Chem. Scr., 29A:139-144, 1989.

35
James F. Leathrum and John A. Board.
The parallel fast multipole algorithm in three dimensions.
Technical report, Dept. of Electrical Engineering, Duke University, Durham, 1992.

36
C. Niedermeier and P. Tavan.
A structure adapted multipole method for electrostatic interactions in protein dynamics.
J. Chem. Phys., 101:734-748, 1994.

37
Christoph Niedermeier.
Modellierung elektrostatischer Wechselwirkungen in Proteinen: Eine strukturadaptierte Multipolmethode.
Doktorarbeit, Ludwig-Maximilians-Universität, München, Germany, 1995.

38
C. Niedermeier and P. Tavan.
Fast version of the structure adapted multipole method -- efficient calculation of electrostatic forces in protein dynamics.
Mol. Sim., 17:57-66, 1996.

39
B. A. Luty, I. G. Tironi, and W. F. van Gunsteren.
Lattice-sum methods for calculating electrostatic interactions in molecular simulations.
J. Chem. Phys., 103:3014-3021, 1995.

40
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen.
The smooth particle mesh ewald method.
J. Chem. Phys., 103:8577, 1995.

41
Brock A. Luty, Ilario G. Tironi, and Wilfried F. van Gunsteren.
Lattice-sum methods for calculating electrostatic interactions in molecular simulations.
J. Chem. Phys., 103:3014-3021, 1995.

42
Brock A. Luty and Wilfried F. van Gunsteren.
Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions.
J. Phys. Chem., 100:2581-2587, 1996.

43
Bernhard R. Brooks, Robert E. Bruccoleri, Barry D. Olafson, David J. States, S. Swaminathan, and Martin Karplus.
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations.
J. Comp. Chem., 4(2):187-217, 1983.

44
Charles L. Brooks III, B. Montgomery Pettitt, and Martin Karplus.
Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids.
J. Chem. Phys., 83(11):5897-5908, December 1985.

45
Richard J. Loncharich and Bernard R. Brooks.
The effects of truncating long-range forces on protein dynamics.
Proteins, 6:32-45, 1989.

46
M. Eichinger, H. Grubmüller, H. Heller, and P. Tavan.
FAMUSAMM: An algorithm for rapid evaluation of electrostatic interaction in molecular dynamics simulations.
J. Comp. Chem., 18:1729-1749, 1997.

47
M. Eichinger.
Paralleler schneller Multipolalgorithmus mit Mehrschrittverfahren für Molekulardynamiksimulationen.
Diplomarbeit, Ludwig-Maximilians-Universität, München, Germany, 1995.

48
M. Eichinger, H. Grubmüller, and H. Heller.
User Manual for EGO_VIII, Release 2.0.
Theoretische Biophysik, Institut für Medizinische Optik, Ludwig-Maximilians-Universität, Theresienstr. 37, D-80333 München, Germany, 1995.
Electronic access: http://www.imo.physik.uni-muenchen.de/ego.html.

49
Helmut Grubmüller, Berthold Heymann, and Paul Tavan.
Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force.
Science, 271(5251):997-999, 1996.

50
E.-L. Florin, V. T. Moy, and H. E. Gaub.
Adhesion forces between individual ligand-receptor pairs.
Science, 264:415-417, Apr. 15 1994.

51
N. M. Green.
Avidin.
Adv. Protein Chem., 29:85, 1975.

52
S. Miyamoto and P. A. Kollman.
Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
Proteins, 16:226-245, 1993.

53
S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten.
Molecular dynamics study of unbinding of the avidin-biotin complex.
Biophys. J., 72:1568-1581, 1997.

54
Evan Evans and Ken Ritchie.
Dynamic strength of molecular adhesion bonds.
Biophys. J., 72:1541, 1997.

55
J. S. Griffith.
Nature (London), 215:1043-1044, 1967.

56
S. B. Prusiner.
Science, 252:1515-1522, 1991.

57
Hans Frauenfelder, Sthephen G. Sligar, and Peter G. Wolynes.
The energy landscape and motions of proteins.
Science, 254:1598-1603, 1991.

58
R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I.C. Gunsalus.
Dynamics of ligand binding to myoglobin.
Biochem., 14(24):5355-5373, 1975.

59
Helmut Grubmüller.
Predicting slow structural transitions in macromolecular systems: conformational flooding.
Phys. Rev. E, 52:2893, 1995.

60
T. Huber, A. E. Torda, and W. F. van Gunsteren.
Local elevation: A method for improving the searching properties of molecular dynamics simulation.
J. of Computer-Aided Molecular Design, 8:695-708, 1994.

61
J. C. Gower.
Some distance properties of latent root and vector methods used in multivariate analysis.
Biometrika, 53:325, 1966.

62
A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen.
Essential dynamics of proteins.
Proteins, 17:412-425, 1993.

63
Steven Hayward, Akio Kitao, and Nobuhiro Go.
Harmonic and anharmonic aspects in the dynamics of BPTI: A normal mode analysis and principal component analysis.
Physica Scripta, 3:936-943, 1994.

64
H. Grubmüller, N. Ehrenhofer, and P. Tavan.
Conformational dynamics of proteins: Beyond the nanosecond time scale.
In M. Peyard, editor, Proceedings of the Workshop `Nonlinear Excitations in Biomolecules', May 30-June 4, 1994, Les Houches (France), Seiten 231-240. Centre de Physique des Houches (France), Springer-Verlag, 1995.



Helmut Heller
1998-02-27